• 제목/요약/키워드: Very Brittle Materials

검색결과 88건 처리시간 0.031초

매우 취성인 재료의 동적 파괴인성치 결정법 (Determination of Dynamic Fracture Toughnesses for very Brittle Materials)

  • 이억섭;전현선
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.160-165
    • /
    • 1997
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughnesses for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracturetoughnesses for very brittle materials because of the small crack initiation load which may be engulfed by the inertia load of the instrumented tup. To evaluate the dynamic fracture toughnesses of very brittle materials, such as chalk or plaster,it is thus, necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has very small Young's modulus comparing to one of the conventional steel tup, is used for the instrumented Charpy impact test, and a proper testing method to evaluate the dynamic fracture behavior of very brittle materials is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initiation of the very brittle materials.

  • PDF

매우 취성인 재료의 동적 파괴인성치 결정법 (Determination of Dynamic Fractrue Toughness for very Brittle Materials)

  • 이억섭;한유상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.724-728
    • /
    • 1996
  • The instrumented Charpy impact test is generally used to evaluate the dynamic fracture toughness for varying engineering materials. However, the test is known to be difficult to evaluate the dynamic fracture toughness for very brittle materials because of the small crack initiation load. To evaluate the dynamic fracture toughness of verybrittle materials, it is necessary to develop a load sensitive instrumented tup. In this study, a polymer tup, which has small Young's modulus, is used for the instrumented Charpyimpact test and a proper testing method is developed. The results show that the developed method can measure rapidly changing loads from the moment of contact between the tup and the specimen to dynamic crack initation of the very brittle materials.

  • PDF

Impact Damage on Brittle Materials with Small Spheres (I)

  • Woo, Su-Chang;Kim, Moon-Saeng;Shin, Hyung-Seop;Lee, Hyeon-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.30-36
    • /
    • 2003
  • Brittle materials such as glasses and ceramics, which are very weak under impact loading, show fragile failure mode due to their low fracture toughness and crack sensitivity. When brittle materials are subjected to impact by small spheres, high contact pressure occurs at the impacted surface causing local damage on the specimen. This damage is a dangerous factor in causing the final fracture of structures. In this research, the crack propagation process of soda-lime glass by the impact of small spheres is explained and the effects of several constraint conditions for impact damage were studied by using soda-lime glass; that is, the effects for the materials and sizes of impact ball, thickness of specimen and residual strength were evaluated. Especially, this research has focused on the damage behavior of ring cracks, cone cracks and several other kinds of cracks.

전해드레싱에 의한 경취재료의 초정밀 연삭에 관한 연구 (A Study on the Ultraprecision Grinding for Brittle Materials With Electrolytic Dressing)

  • 김정두;이연종;이창열
    • 대한기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.1486-1496
    • /
    • 1993
  • 본 연구에서는 새로운 연속 전해드레싱 시스템을 구축하고 현재 전자재료로 널리 사용되고 있는 훼라이트에 대하여, 경면연삭을 실현하기 위한 제반 연삭조건 즉, 전해액의 영향, 파크전류와 펄스폭의 영향, 전해드레싱과 취성파괴와의 관계 등을 규명하였다.

광학소자의 초정밀절삭 특성에 관한 연구 (The Characteristics of Ultra Precision Machining of Optical Crystal)

  • 김주환;박원규;김건희;원종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.529-532
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency. poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result. the surface roughness is good when spindle speed is 200m/min. and teed rate is small. The influence of depth of cut is very small.

  • PDF

연속 방전드레싱에 의한 경취재료의 경면연삭에 관한 연구 (A Study on the Mirror Surface Grinding for Brittle Materials with Inprocess E.D.M. Dressing)

  • 김정두;이은상
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.785-792
    • /
    • 1994
  • Ferrite is widely used in the material of magnetic head, but is difficult of grinding because of their brittleness and hardness. Therefore, diamond wheel with superabrasive is required for surface grinding of this brittle material. But the conventional dressing method can not apply to the diamond wheel with superabrasive. In this study describes a newly proposed method for carrying out effective inprocess dressing of diamond wheel with superabrasive. Using the IEDD the surface roughness of workpiece was improved and grinding force was very low. Resently IEDD is good method to obtain the efficiency grinding and surface grinding of brittle materials.

취성재료의 소구충돌에 의한 충격손상 (I) (Impact Damage on Brittle Materials with Small Spheres (I))

  • 우수창;김문생;신형섭;이현철
    • 한국정밀공학회지
    • /
    • 제18권11호
    • /
    • pp.93-100
    • /
    • 2001
  • Brittle materials are very weak for impact because of typical characteristics which happen to be easily fractured with low fracture toughness and crack sensitivity. When brittle materials are subjected to impact due to small spheres, high contact pressure is occurred to impact surface and then local damage on specimen is developed, since there are little plastic deformations due to contact pressure compared to metals. This local damage is a dangerous factor which gives rise to final fracture of structures. In this research, the crack propagation process of soda lime glass by impact of small sphere is explained and the effects of the constraint conditions of impact spheres and materials for the material damage were studied by using soda-lime glass. that is the effects for the materials and sizes of impact ball, thickness of specimen and residual strength. Especially, this research has focused on the damage behavior of ring crack, cone crack and several kinds of cracks.

  • PDF

세라믹스의 파괴강도에 관한 확률론적 해석 (A Probabilistic Analysis on Fracture Strength of Ceramics)

  • 김선진
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.61-68
    • /
    • 1996
  • Weibull distribution function is applied very successfully to the strength of brittle materials such as ceramics and the weakest link model is applied to explain the ovents. This paper deals with the effect of specimen size on the strength of ceramics. The values of tensile strength were calculated by the Monte-Calro simuation. The tensile strength obtained was plotted on Weibull probabillity papers and represented by the 3-parameter Weibull distribution. The strength distribution function was compared with the theoretical weibull distribution. As a result, it was found that the Weibull shape parameter was changed due to the size and there was a possibility of a false indication as if the weakest link model holds good. We should be very careful when we apply the Weibull statistics to estimate the strength of products.

  • PDF

최적 연속 전해드레싱에 의한 연삭기구의 규명에 관한 연구 (A study on the analysis of grinding mechanism by using optimum in-process electrolytic dressing)

  • 이은상;김정두
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1298-1310
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of brittle materials used in electric, optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of brittle materials. However, the present dressing system cannot have control of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel, and give very effective control according to unstable current and gap increase. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of brittle materials.

적외선용 광학소자의 초정밀 절삭특성 (The Characteristics of Ultra Precision Machining of Optical Crystals for Infrared Rays)

  • 원종호;박원규;김주환;김건희
    • 한국기계가공학회지
    • /
    • 제2권1호
    • /
    • pp.57-62
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in tills paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF