• Title/Summary/Keyword: Vertical vibration

Search Result 843, Processing Time 0.032 seconds

A Study on the Redundant Vibration Analysis for the Development of Scratch Processing Technology (스크래치 가공기술 개발에 따른 잉여 진동 성분 분석에 관한 연구)

  • Jeon C.D.;Cha J.H.;Yun Sh.I.;Han S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1660-1663
    • /
    • 2005
  • Unwanted vibrations are inevitably induced in other directions when pure unidirectional vibration motion is desired for the vertical scratching mechanism. Pure vertical vibration motion of the scratching machine can be obtained by driving identical two motors with symmetrically positioned eccentric unbalance masses. The desired optimal condition for driving pure vertical vibration for the scratching machine is assumed to be the resonance condition in that direction. Imposing the flexibility of the scratching machine in the horizontal direction, we can find out the amount of horizontal vibration component while maintaining the resonance in vertical direction. The desired stiffness in horizontal direction which produces the minimum vibration in horizontal direction are defined which can be used as a guide line to design the supporting structure of the scratching machine.

  • PDF

Effect of Local Vibration on Quadriceps Femoris on Vertical Jump (대퇴사두근에 대한 국소적 진동 적용이 수직점프에 미치는 영향)

  • Bang, Hyun-Soo;Choen, Song-Hee;Lee, Hyun-Min;Heo, Gwang-Ho;Kang, Jong-Ho;Kim, Jin-Sang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.3 no.2
    • /
    • pp.75-80
    • /
    • 2008
  • Purpose : The purpose of this study was to evaluate the effects of local vibration on quadriceps femoris on vertical jump Method : The subjects(40) were divided into man control group(10) woman control group(10) and man vibration group(10), woman vibration group(10). Vibration group was given vibration on quadriceps femoris for 15 minutes and control group was given resting for 15 minutes. All subjects of each group were tested on vertical jump then pre and post test. Results : 1. Man control group and woman control group vertical jump didn't have statistically difference pre and post test(p>0.05). 2. In the woman vibration group vertical jump didn't have significant difference pre and post test(p>0.05), but had significant difference in the man vibration group(p<0.05) Conclusion : Vibration on quadriceps femoris have an effect on vertical jump. Therefore, the vibration will be effective in treatment of muscle strength.

  • PDF

Efficient Analysis Models for Vertical Vibration of Space Framed Structures (3차원 골조구조물의 효율적인 연직진동해석)

  • 안상경;홍성일;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.78-85
    • /
    • 1996
  • The effect of vertical vibration of a beam is significantly influenced by higher modes of vibration. Therefore, a beam can be modeled using several elements must De used to represent a vibrating beam. As a result, analysis of a space framed structure for vertical vibration requires increase number of elements leading to more complicated model with many degree of freedom which requires large amount of computing resources for dynamic analysis. An efficient analysis method for vertical vibration of space framed structures are proposed in this paper which is presented in three method. The first method is to determine minimum nodes that shall be used to obtain dynamic response with the vertical vibration. Secondly, matrix condensation methods are introduced to reduce the computation efforts used to perform dynamic analysis and the selection of primary degree-of-freedom is proposed. The third method is of using the mass participation factor for the selection of primary degree-of-freedom.

  • PDF

The Characteristics of Blasting Vibration in the Construction of Apartment and Buildings in Urban Area (도심지 발파공사장의 발파진동 특성)

  • 장서일;이연수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.632-638
    • /
    • 2004
  • In order to evaluate the effect of blasting vibration in buildings and it's resident located around blasting construction field in urban area, blasting vibration characteristics were measured by the vibration level, vibration velocity. The 250g and 750g of charged powder were used at the apartment and at the ground, respectively. In the measurement of the ground, 2 (perpendicularity) axis was the highest value in vibration level, but vertical direction was the highest value at 25 m point and longitudinal direction was the highest value at 50 m point in vibration velocity. The amount of measurement was high value when measuring point is higher than blasting source, while that of measurement was low value when measuring point is lower than blasting source. In the measurement of the apartment, Z axis was the highest value in vibration level, but in vibration velocity transverse direction was the highest value at ground, was vertical direction at 1st floor, was longitudinal direction at 3rd floor and was vertical and longitudinal direction at 5th floor. The vibration level and the vibration velocity of 50 m point showed higher correlation value than 25 m point at the ground, but those of 25 m point showed higher correlation value than 50 m point at the apartment.

An Optimal Design of a Vertical Guide Bearing for Vibration Reduction (축계 진동 저감을 위한 수직형 안내 베어링의 최적 설계)

  • Ha, Hyun-Cheon;Park, Chul-Hyun;Kim, Hyung-Ja
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.64-72
    • /
    • 2001
  • This paper describes an optimal design technology in a segment type vertical guide bearing for vertical rotating machinery. Segment type vertical guide bearings have widely used for vertical rotating machinery, however bearing problems, such as excessive vibration and temperature rise, frequently take place in the actual machine. Such excessive vibration magnitude and/or abnormal bearing metal temperature rise result in serious damage and economic losses. Thus the segment type vertical guide bearing should be designed to get optimal characteristics in order to maintain stable operation without bearing failure due to abnormal vibration and/or abnormal bearing metal temperature. The preload ratio is the most important parameter in designing the segment type vertical guide bearing. Because adjustment of the bearing preload by changing the bearing clearance could easily control both the bearing stiffness and the cooling effect. In the paper, the influence of the preload effects on the bearing metal temperature and the bearing stiffness has been investigated both theoretically and experimentally in order to find out an optimum preload ratio. Results show that the segment type vertical guide bearing has an optimum preload ratio at which the bearing stiffness reaches a masimum value while the bearing metal temperature is minimized.

  • PDF

Vibration Serviceability Evaluation of Railway Bridges Considering Bridge-train Transfer function (열차-교량 진동전달특성을 이용한 철도교량의 진동사용성 평가기법)

  • Jeon, Bub-Gyu;Kim, Nam Sik;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.359-366
    • /
    • 2009
  • This paper aims for analyzing the vibration serviceability of train by simply expressing its vertical vibration when it passes a railway bridge. For this purpose, bridge-train transfer function was derived and bridge-train interaction analysis was performed by using the derived function. The bridge-train transfer function was developed with the assumption that train is a single mass-spring system, and bridge-train interaction analysis was performed on simple beams of KTX passenger car. The vertical acceleration signals of passenger cars obtained from bridge-train interaction analysis were compared with them of cars obtained from the bridge-train transfer function. As a result, it could be estimated to express the vertical vibration inside the passenger car required for vibration serviceability evaluation by using the vertical vibration of bridges obtained from moving load analysis. Therefore, it may be possible to evaluate the vibration serviceability of railway bridges considering bridge-train interaction effect.

  • PDF

Development of Vibration Compensator for Vertical Vibration Damping of Ships (선박의 수직방향 진동 감쇠를 위한 진동보상기의 개발)

  • Jung, Min Je;Kim, Tae Ok;Ahn, Jung Hwan;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.205-210
    • /
    • 2020
  • The aim of this study is to develop a vertical vibration compensator that attenuates the vertical vibration of ships. The vibration compensator was designed according to the principle of generating vertical excitation forces by rotating two eccentric bodies of the same mass in opposite directions at the same rotational speed. In addition, the structural stability was analyzed using the finite element method. The maximum stress in the drive shaft was 95.6 MPa, which was approximately 35% of the allowable stress of the shaft material (SM45C, 270 MPa). The acceleration signals of the vibrator compensator body and the testbed were determined to evaluate the efficiency of the vibration compensator and the designed excitation forces. Subsequently, the excitation forces were estimated based on the relationship between force and acceleration. The estimated results were very close to the theoretical values with an error of less than 3%.

Effect of Exercise with Vertical Vibration on the Balance, Walking Speed, Muscle Strength and Falls Efficacy in the Elderly (수직 진동 운동이 노인의 균형, 보행속도, 근력 및 낙상효능감에 미치는 효과)

  • Park, Jin-Hwan;Kim, Young-Min
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.4
    • /
    • pp.131-143
    • /
    • 2020
  • PURPOSE: The purpose of this study was to determine if an exercise program with vertical vibration can improve balance, walking speed, muscle strength and falls efficacy in the healthy elderly. METHODS: A total of 28 elderly were randomly divided into two groups: vertical vibration exercise group (exercise with vertical vibration) (N = 14) and control group (exercise without vibration) (N = 14). The exercise program, comprising calf raise, deep-squat, semi-squat, front lunge, and leg abduction was conducted with or without vibration, respectively. Subjects in each group participated in the 30 minutes training program, 2 times per week for 6 weeks. In both groups, the balance evaluation system (BT4) was used to evaluate standing balance, and walking speed was measured using the 10MWT. The manual muscle test system was applied to evaluate the knee extensor and ankle planter flexor muscle strength of the subjects, whereas the Korean falls efficacy scale (K-FES) evaluated the falls efficacy. RESULTS: After intervention, the vertical vibration group showed significantly higher changes compared to the control group, in the parameters of standing balance (P < .05), 10MWT (P < .05), left knee extensor (P < .05), right knee extensor (P < .01), both ankle plantar flexors (P < .05), and K-FES (P < .05). CONCLUSION: The exercise program with vertical vibration has the potential to improve balance, walking speed, muscle power and falls efficacy in the elderly.

Efficient Analysis Models for Vertical Vibration of 3-Dimensional Structures (효율적인 3차원 구조물의 연직진동 해석)

  • 안상경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.143-150
    • /
    • 1997
  • Generally, the problem of vertical vibration of structure is generated slab. Analysis of space framed structures with slab for vertical vibration requires more efficient modeling and analysis technique, because number of elements lead to more complicated model with many degree of freedom which requires large amount of computing resources for dynamic analysis. This paper propose an efficient analysis method for vertical vibration of space framed structure with slab. At first, proposed model is selected minimum joints and degree of freedom which are acquired sufficient dynamic response to the vertical vibration. Secondly, super-elements that are made a number of element are used for simple input data and fast analysis.

  • PDF

Analytical study on free vertical and torsional vibrations of two- and three-pylon suspension bridges via d'Alembert's principle

  • Zhang, Wen-ming;Wang, Zhi-wei;Zhang, Hao-qing;Lu, Xiao-fan;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.293-310
    • /
    • 2020
  • This study derives the differential equations of free vertical bending and torsional vibrations for two- and three-pylon suspension bridges using d'Alembert's principle. The respective algorithms for natural vibration frequency and vibration mode are established through the separation of variables. In the case of the three-pylon suspension bridge, the effect of the along-bridge bending vibration of the middle pylon on the vertical bending vibration of the entire bridge is considered. The impact of torsional vibration of the middle pylon about the vertical axis on the torsional vibration of the entire bridge is also analyzed in detail. The feasibility of the proposed method is verified by two engineering examples. A comparative analysis of the results obtained via the proposed and more intricate finite element methods confirmed the former feasibility. Finally, the middle pylon stiffness effect on the vibration frequency of the three-pylon suspension bridge is discussed. It is found that the vibration frequencies of the first- and third-order vertical bending and torsional modes both increase with the middle pylon stiffness. However, the increase amplitudes of third-order bending and torsional modes are relatively small with the middle pylon stiffness increase. Moreover, the second-order bending and torsional frequencies do not change with the middle pylon stiffness.