• Title/Summary/Keyword: Vertical type

Search Result 2,202, Processing Time 0.024 seconds

The Effects of Facing Plan on Store Image and Preference of Young Casual Fashion Store (영 캐주얼 의류매장의 상품진열방법이 점포이미지와 선호도에 미치는 영향)

  • Lee, Mi-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.3
    • /
    • pp.500-510
    • /
    • 2009
  • The purpose of this study was to examine the effects of facing plan on store image and preference of young casual fashion store. The subjects were 545 male and female university students in Chungnam province. The measuring instruments were 7 stimuli manipulated by facing plan, an important VMD element, and self-administrated questionnaire consisted of store image, store preference and subject's demographic characteristics. The data were analyzed by t-test, ANOVA and Duncan's multiple range test, using SPSS program. The results were as follows. First, facing type significantly affected consumer' store image; folded type had more neat and elegant image than other facing types, and face out type had most comfort image, whereas sleeve out type had discomfort image. Second, arrangement of facing types also affected store image; style arrangement had more sophisticated image than color arrangement in sleeve out type, and vertical and horizontal arrangement had more neat, sophisticated, attractive and comfort image than separate arrangement in folded type. Third, facing type affected store preference; folded type showed higher store preference than sleeve out type. Forth, arrangement of folded type affected store preference; vertical and horizontal arrangement showed higher store preference than separate arrangement. Fifth, store image and preference were different by subject's sex; male subjects perceived style arrangement as more elegant, characteristic and attractive image, and showed higher store preference than female subjects on separate arrangement of folded type.

Analysis on Torso Shapes of Women in 50s and 60s (50~60대 여성의 체간부 체형분석)

  • Kim, Hyo-Sook;Lee, So-Young;Kim, Ji-Min;Lee, Jun-Hyuk
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.3
    • /
    • pp.311-323
    • /
    • 2012
  • This study establishes the initial data to develop a well-fitted underwear pattern by categorizing and analyzing torso types based on body measurements of women in their 50s and 60s. The results are as follows: First, the statistical assessment on the body measurements showed meaningful differences among age groups in twenty seven items (except for bust breadth, hip width armscye depth, hip depth, neck base circumference, armscye circumference, chest circumference, hip circumference, bishoulder length, shoulder length, front interscye, back interscye, weight and inclined angle of left shoulder). Women in their early 50s and late 60s (respectively) showed the highest values in height and depth. Second, there are five body factors according to the results of the factor analysis: Factor 1 (circumference, width, and depth of upper body measurements) - the degree of body depth and obesity, Factor 2 (height and vertical length) - The vertical torso length, Factor 3 - the size of shoulder, Factor 4 - the vertical upper body length, and Factor 5 - the size of shoulder angle. Third, the results of the cluster analysis showed that there are four distinctive body types. The largest number of the study subjects was related to Type 3 (30.69%), followed by Type 2 (26.78%), Type 1 (25.84%), and Type 4 (16.69%), respectively. For distribution of age groups by body type, Type 3 was the most common among the 60s group while Type 2 appeared most frequently among the 50s.

Study on the Taxing Mode Control of MR Damper Landing Gear (MR 댐퍼 착륙장치의 택싱모드 제어기법에 대한 연구)

  • Lee, Hyosang;Hwang, Jaihyuk
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.43-51
    • /
    • 2019
  • The aircraft vertical acceleration from the excitation of the road surface in the taxing mode is a main factor with a negative effect on the boarding quality of pilots and passengers. In this paper, we propose an appropriate control method to improve the boarding quality of the MR damper landing gear. The proposed control method is Skyhook Control Type 2, which feeds the aircraft vertical acceleration back in addition to the aircraft vertical velocity. Since Skyhook Control Type 2 factors the velocity and acceleration of the upper mass, it can be expected to exceed the control performance of the existing Skyhook Control that factors only the upper mass velocity. For the simulation, the bumper type road surface was selected as a ground surface, and the landing gear model constructed with RecurDyn and the controller designed with Simulink were co-simulated. The control effect of Skyhook Control Type 2 was verified by comparing and analyzing the RMS and maximum value of the upper mass acceleration according to the taxing speed and control method.

Characteristics of Vertical Vibration Transfer according to RC Structure Systems (RC조 건축물의 구조시스템에 따른 수직진동 전달 특성 비교)

  • Chun, Ho-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.196-201
    • /
    • 2006
  • In general, the vertical vibration problems for strength of members and serviceability of building structures are not considered in structural design process, but the prediction of the vertical vibration is very important and essential to structural design process. This study aims to investigate the characteristics of vertical vibration in terms of the transfer of horizontal directions on the rahmen building structures and the shear wall building structures. In order to examine the characteristics of vertical vibration, the modal test and the heel-drop excitation experiments were conducted several times on the two type building structures. The results from the experiments are analyzed and compared with the results. The results of this study suggest that the characteristics of vortical vibration transfer in horizontal way are effected from the fundamental frequency of the slabs and excitation forces and are effected the shear wall on the path of the vibration transfer.

  • PDF

Evaluation of Vertical Displacement of Door of Built-in Bottom-Freezer Type Refrigerator by Structural Analysis (구조해석을 통한 하부냉동실형 빌트인 냉장고 도어의 처짐량 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • In this study, we developed a finite element model for the built-in bottom-freezer type refrigerator and then used the structural analysis method to analyze and evaluate the deflection of the doors. We tested the validity of the developed analytical model by measuring the deflection of the hinge when loads were applied to the upper and lower hinges of the refrigerating compartment and compared these with the analysis results. The comparison of the vertical displacement of the measured result and the analysis result showed an error ratio of up to 12.8%, which indicates that the analytical model is consistent. Using the analytical model composed of the cabinet, hinges and doors, we performed analyses for two cases: both doors closed, and the refrigerating door open. Since the maximum vertical displacement of the refrigerating compartment door (R-door) with the food load is smaller than the gap between the lower surface of the R-door and the upper surface of the freezer compartment door (F-door), it is judged that the R-door and the F-door do not contact when the doors are opened or closed. In addition, the analysis result showed that the difference between the vertical displacement at the hinge on the opposite side and the hinge side of the R-door is favorably smaller than the management criterion of the refrigerator manufacturer.

Development of a Junction between Airport Concrete and Asphalt Pavements (공항 콘크리트와 아스팔트 포장 간의 접속 방법 개발)

  • Park, Hae Won;Kim, Dong Hyuk;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.15-20
    • /
    • 2018
  • PURPOSES : The purpose of this study is to analyze the magnitude of shoving of asphalt pavement by junction type between airport concrete and asphalt pavements, and to suggest a junction type to reduce shoving. METHODS : The actual pavement junction of a domestic airport, which is called airport "A" was modified by placing the bottom of the buried slab on the top surface of the subbase. A finite element model was developed that simulated three junction types: a standard section of junction proposed by the FAA (Federal Aviation Administration), an actual section of junction from airport "A" and a modified section of junction from airport "A". The vertical displacement of the asphalt surface caused by the horizontal displacement of the concrete pavement was investigated in the three types of junction. RESULTS : A vertical displacement of approximately 13 mm occurred for the FAA standard section under horizontal pushing of 100 mm, and a vertical displacement of approximately 55 mm occurred for the actual section of airport "A" under the same level of pushing. On the other hand, for the modified section from airport "A" a vertical displacement of approximately 17 mm occurred under the same level of pushing, which is slightly larger than the vertical displacement of the FAA standard section. CONCLUSIONS : It was confirmed that shoving of the asphalt pavement at the junction could be reduced by placing the bottom of the buried slab on the top surface of the subbase. It was also determined that the junction type suggested in this study was more advantageous than the FAA standard section because it resists faulting by the buried slab that is connected to the concrete pavement. Faulting of the junctions caused by aircraft loading will be compared by performing finite element analysis in the following study.

Study on the Electrode Design for an Advanced Structure of Vertical LED (Via-hole 구조의 n-접합을 갖는 수직형 발광 다이오드 전극 설계에 관한 연구)

  • Park, Jun-Beom;Park, Hyung-Jo;Jeong, Tak;Kang, Sung-Ju;Ha, Jun-Seok;Leem, See-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.71-76
    • /
    • 2015
  • Recently, light emitting diodes (LEDs) have been studied to improve their efficiencies for the uses in various fields. Particularly in the aspect of chip structure, via hole type vertical LED chip is developed for improvement of light output power, and heat dissipations. However, current vertical type LEDs have still drawback, which is current concentration around the n-contact holes. In this research, to solve this phenomenon, we introduced isolation layer under n-contact electrodes. With this sub-electrode, even though the active area was decreased by about 2.7% compared with conventional via-hole type vertical LED, we could decrease the forward voltage by 0.2 V and wall-plug efficiency was improved approximately 4.2%. This is owing to uniform current flow through the area of n-contact.

An Analysis on the Vertical Load Bearing Behavior according to Construction Methods of a Environment-friendly Screw Concrete Pile for the Noise and Vibration-free Method (무소음.무진동 공법을 위한 환경친화적인 스크류콘크리트말뚝의 시공방법에 따른 연직하중지지거동 분석)

  • Kim, Dongchul;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.5-11
    • /
    • 2013
  • Because the regulation for a noise and a vibration in our country has been being reinforced more and more, a more environment-friendly pile construction method than a current low-noise and low-vibration method was needed for the close construction in the downtown area. In this study, the characteristics of a screw concrete pile method for noise and vibration-free method was explained, and it's vertical bearing capacity was studied in the base of the static pile load test data of the screw concrete piles. Constructed by two methody; a pre-digging shoe type construction method and a toe-jetting shoe type construction method. The vertical load bearing capacity of a screw pile constructed by the former was more about 70% than that of a screw pile constructed by the latter.

Shape design and flow analysis on a 200W-class gyromill type vertical axis wind turbine rotor blade (200 W급 자이로밀형 수직축 풍력터빈 로터 블레이드 형상설계 및 유동해석)

  • Cho, Woo-Seok;Kim, Hyun-Su;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.170-177
    • /
    • 2013
  • This study is focused on the shape design and flow analysis on a 200 W-class Gyromill type vertical axis wind turbine rotor blade. Single tube theory is adopted for the shape design of the turbine blade. 2-dimensional CFD analysis is conducted to examine the turbine performance with basic shape, and then 3-dimensional shape is determined from the examination of the performance. By the CFD analysis on the 3-dimensional shape of the wind turbine, performance of the turbine is examined and also, shape of the wind turbine rotor blade is determined accordingly. From the results of this study, a 200 W-class Gyromill type vertical axis wind turbine rotor blade is designed and the reliability of the design method is confirmed by CFD analysis.

An Estimating Mehod of the Angle of Attack of a Vertical V-type Otter Board (종만곡 V형 전개판의 영각 추정법)

  • Park, Hae-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.2
    • /
    • pp.113-121
    • /
    • 2005
  • How to extimate the angle of attack of a vertical V-type cambered otter board was described. A three-dimensional semi-analytic treatment of a towing cable system was applied to the field experiments of a midwater trawl obtained by the Scanmar system. Also the equilibrium condition of the horizontal component and vertical component of forces and moment around the otter board was used. When the warp length was 300m long and the towing speed was between 2.61 and 3.86 knots, the estimated angle of attack of the otter board was ranged between $24.7^{\circ}$ and $26.2^{\circ}$, though the maximum lift force was at the angle of attack $22^{\circ}$.