• 제목/요약/키워드: Vertical tube

검색결과 402건 처리시간 0.04초

Experimental study on circular CFST short columns with intermittently welded stiffeners

  • Thomas, Job;Sandeep, T.N.
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.659-667
    • /
    • 2018
  • This paper deals with the experimental study on strength the strength and deformation characteristics of short circular Concrete Filled Steel Tube (CFST) columns. Effect of vertical stiffeners on the behavior of the column is studied under axial compressive loading. Intermittently welded vertical stiffeners are used to strengthen the tubes. Stiffeners are attached to the inner surface of tube by welding through pre drilled holes on the tube. The variable of the study is the spacing of the weld between stiffeners and circular tube. A total of 5 specimens with different weld spacing (60 mm, 75 mm, 100 mm, 150 mm and 350 mm) were prepared and tested. Short CFST columns of height 350 mm, outer tube diameter of 165 mm and thickness of 4.5 mm were used in the study. Concrete of cube compressive strength $41N/mm^2$ and steel tubes with yield strength $310N/mm^2$ are adopted. The test results indicate that the strength and deformation of the circular CFST column is found to be significantly influenced by the weld spacing. The ultimate axial load carrying capacity was found to increase by 11% when the spacing of weld is reduced from 350 mm to 60 mm. The vertical stiffeners are found to effective in enhancing the initial stiffness and ductility of CFST columns. The prediction models were developed for strength and deformation of CFST columns. The prediction is found to be in good agreement with the corresponding test data.

2개의 수직휜이 부착된 내관으로부터 환상공간내의 자연대류 열전달 (Natural convection heat transfer in a horizontal annulus from an inner tube with two vertical fins)

  • 정태현;정한식;권순석
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.654-660
    • /
    • 1991
  • Natural convection heat transfer in a horizontal annulus from an inner tube with two vertical fins has been studied for the effects of dimensionless fin length and Rayleigh number. The maximum local Nusselt number of inner tube was obtained at .theta. = 145.deg. and that of outer cylinder at .theta. = 0.deg. for the case of $l_{F}$=0.3 Local Nusselt number distributions for the lower fins show higher values than that of the upper fins. The mean Nusselt number of inner tube was increased with the values of dimensionless fin length. The mean Nusselt number can be represented in an exponential function of Grashof number at various fin lengths. As compared with experimental and numerical results, isotherms and local Nusselt number show good agreement.t.

Effects of the Width and Location of a Flow Disturbing Plate on Pool Boiling Heat Transfer on a Vertical Tube

  • Kang Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • 제35권3호
    • /
    • pp.191-205
    • /
    • 2003
  • Effects of the width and location of a flow disturbing circular plate, installed at a vertical tube surface, on nucleate pool boiling heat transfer of water at atmospheric pressure have been investigated experimentally. Through the tests, changes in the degree of intensity of liquid agitation have been analyzed. The plate changes the fluid flow around the tube as well as heat transfer coefficients on the tube surface. It is identified that the plate width changes the rate of the circulating flow whereas its location changes the growth of the active agitating flow. Moreover, the flow chugging was observed at the downside of the plate.

튜브 경사각이 포화풀핵비등 열전달에 미치는 영향 (Effects of Tube Inclination on Saturated Nucleate Pool Boiling Heat Transfer)

  • 강명기
    • 대한기계학회논문집B
    • /
    • 제32권5호
    • /
    • pp.327-334
    • /
    • 2008
  • Effects of tube inclination on pool boiling heat transfer have been studied for the saturated water at atmospheric pressure. For the analysis, seven inclination angles varying from the horizontal to the vertical and two tube diameters(25.4 and 30.0 mm) are tested. According to the results, inclination angles result in much change on heat transfer. For the same wall superheat(about $5.3^{\circ}C$) the ratio between two heat fluxes for the $45^{\circ}$ inclined and the vertical has the value of more than five when the tube diameter is 25.4mm. As the inclination angle is increasing from the horizontal to the vertical direction heat transfer is gradually increasing because of the increase in liquid agitation. However the detailed tendency depends on the ratio between the tube length and the diameter.

공랭형 수직원관 흡수기에서의 열 및 물질전달 해석 (Analysis of heat and mass transfer in a vertical tube absorber cooled by air)

  • 김선창;오명도;이재헌
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3293-3303
    • /
    • 1996
  • Numerical analyses have been performed to estimate the absorption heat and mass transfer coefficients in absorption process of the LiBr aqueous solution and the total heat and mass transfer rates in a vertical tube absorber which is coolING ed by air. Axisymmetric cylindrical coordinate system was adopted to model the circular tube and the transport equations were solved by the finite volume method. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by water vapor in tube. Effects of film Reynolds number on heat and mass transfer coefficients have been also investigated. Especially, effects of tube diameter have been considered to observe the total heat and mass transfer rates through falling film along the tube. Based on the analysis it has been found that the total mass transfer rate increases rapidly in a region with low film Reynolds number(10 ~ 40) as the film Reynolds number increases, while decreases beyond that region. The total heat and mass transfer rates increase with increasing the tube diameter.

외부 튜브 길이가 긴 수직 환상공간 내부의 풀비등 열전달 (Pool Boiling Heat Transfer in a Vertical Annulus with a Longer Outside Tube)

  • 강명기
    • 대한기계학회논문집B
    • /
    • 제36권8호
    • /
    • pp.775-782
    • /
    • 2012
  • 수직으로 설치된 하부폐쇄 환상공간 내부의 풀비등 열전달 메카니즘을 알기 위하여 환상공간의 튜브 길이를 0.3m와 0.6m 사이에서 변경하였다. 실험을 위해 0.2m의 가열 길이를 갖는 직경 19.1mm인 스테인리스강 튜브와 대기압 상태 하에 있는 물을 사용하였다. 외부 튜브 길이가 열전달에 미치는 영향을 분명하게 살펴보기 위해 환상공간에 대한 결과를 환상공간이 없는 단일튜브에 대한 결과와 서로 비교하였다. 동일 열유속에서 외부튜브 길이의 증가는 틈새간격이 3.5mm인 경우에는 열전달계수의 증가하지만 틈새간격이 15.5mm인 경우에는 열전달계수가 감소하였다. 이러한 경향의 주된 원인은 액체교란의 차이로서 설명된다.

수직 액막형 흡수기의 성능 최적화에 관한 연구 (Study on the Optimization of Absorption Performance of the Vertical Tube Absorber with Falling Film)

  • 김정국;조금남
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.830-838
    • /
    • 2005
  • The present study investigated the optimization of the absorption performance of the vertical absorber tube with falling film by considering heat and mass transfer simultaneously. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of coolant flow rate and the flow pattern by geometric parameters has been observed for the total heat and mass transfer rates through both numerical and experimental studies. Based on both predicted values, the optimal coolant flow rate was predicted as 1.98 L/min. The maximum absorption rate of the spring inserted tube was increased by the maximum of $20.0\%$ than those for uniform film of bare tube. Average Sherwood numbers and Nusselt numbers were increased as Reynolds numbers increased under the dynamic and geometric conditions showing the maximum absorption performance.

상변화 물질을 사용한 축열조에서의 열전달 - 수직원관에서의 내향용융 실험 - (Heat Transfer in Heat Storage System with P.C.M. - Inward Melting in a Vertical Tube)

  • 손화승;황태인;이채문;최국광;임장순
    • 태양에너지
    • /
    • 제9권1호
    • /
    • pp.53-61
    • /
    • 1989
  • In the present investigation, experiments on the melting of a phase change material were performed to research heat transfer phenomena generated by means of conduction and natural convection in the vertical tube at inward melting. The phase change material used in the experiments is 99 percent pure n-Docosane paraffin which is measured melting temperature of $42.5^{\circ}C$, latent heat of 37.5 cal/g, heat conductivity of $0.1505W/m^{\circ}C$. Experiments were performed both in the no-subcooling which is initiating it at melting temperature of phase change material, and in the subcooling which means to initiate it under melting temperature of phase change material, in order to compare and investigate the horizontal temperature history, vertical temperature history, ratio of melting and melted mass, figure of the melting front in the vertical tube. In the experimental results, heat transfer from tube wall to phase change material were due to conduction at early stage and due to natural convection with the passage of time, and then occurred melting downward from surface by volumetric expansion. Natural convection affects temperature distribution in the tube, ratio of melting and melted mass, figure of the melting front and then progress rapidly in case of nosubcooling compared to subcooling.

  • PDF

수직형 순환유동층 열교환기에서의 유체유동과 온도장의 수치해석 (Numerical analysis of fluid flow and thermal fields in the vertical fluidized bed heat exchanger)

  • 이병창;강호근;이명성;안수환
    • 동력기계공학회지
    • /
    • 제16권4호
    • /
    • pp.24-29
    • /
    • 2012
  • The numerical analysis by using CFX 11.0 commercial code was done for prediction of fluid flow and thermal field in the vertical heat exchanger. The present experimental studies were also conducted to investigate the effects of circulating solid particles on the fluid flow and temperatures in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which the solid particles of glasses (3 $mm{\Phi}$) were used in the fluidized bed with a smooth tube. The effect of circulation on the distance(L) of tube inlet and baffle plate was also examined. The present experimental and numerical results showed that the particles in the distance (Ds) of 15 mm showed a more efficient circulation without stacked the space and the LMTD(Log Mean Temperature Difference) in the fluidized bed type was much lower than that in the typical type shell and tube heat exchanger.

경사진 원통형 용기내에서 상변화 물질의 내향 용융에 관한 실험적 연구 (Experimental Study on Inward Melting of Phase Change Material in Inclined Circular Tube)

  • 임장순;송하진
    • 태양에너지
    • /
    • 제12권1호
    • /
    • pp.48-58
    • /
    • 1992
  • 온도가 일정한 외벽을 열원으로 하는 수직 원통형 용기내에 채워진 물질(PCM)의 내향용융 과정에서 용기의 경사각의 변화에 따른 상변화 물질 내의 온도 분포, 용융율, 용융 에너지 등을 실험적으로 연구, 분석하였다. 상변화 물질로는 용융점 온도가 $42.5^{\circ}C$인 n-docosane paraffin($C_{22}H_{46}$)을 사용하였다. 수직 원통형 용기내에서 PCM 용융의 열전달 기구는 자연 대류에 의한 용융이 지배적인 반면 경사진 용기 내에서 용융은 자연 대류 및 고상 PCM과 용기 벽면의 직접 접촉에 의한 조합된 열전달 현상으로 나타났으며, 경사진 용기 내에서 파라핀의 용융율 및 용융에너지는 동일 온도 조건에서 수직 원통형 용기에서 보다 높은 값을 나타내었다.

  • PDF