• 제목/요약/키워드: Vertical support stiffness

검색결과 59건 처리시간 0.024초

차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계 (Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body)

  • 박철희;오진우
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

복합적층판 이론에 의한 철근콘크리트 슬래브교의 해석 (Analysis of Reinforced Concrete Slab Bridges by the Composite Laminates Theory)

  • 한봉구;김덕현
    • 복합신소재구조학회 논문집
    • /
    • 제1권1호
    • /
    • pp.9-15
    • /
    • 2010
  • In this paper, A reinforced concrete slab bridges is analyzed by the composite laminates theory. Both the geometry and the material of the cross section of the reinforced concrete slab bridge are considered symmetrical with respect to the mid-surface so that the bending extension coupling stiffness, Bij = 0, and D16 = D26 = 0. Each longitudinal and transverse steel layer is regarded as a lamina, and material constants of each lamina is calculated by the use of rule of mixture. This slab with simple support is under uniformly distributed vertical and axial loads. In this paper, the finite difference method and specially orthotropic laminates theory are used for analysis. The result of specially orthotropic laminates theory analysis is modified to obtain the solution of the beam analysis. The result of this paper can be used for reinforced concrete slab analysis by the engineers with undergraduate study in near future.

  • PDF

오토클레이브 성형된 길이 23m 복합재 철도차량 차체의 구조적 특성평가 (Structural Safety Evaluation of An Autoclave Cured Train Carbody with Length of 23m)

  • 김정석;이상진
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1551-1559
    • /
    • 2005
  • This paper explains manufacturing process and experimental studies on a composite carbody of Korean tilting train. The composite carbody with length of 23m was manufactured as a sandwich structure composed of a 40mm-thick aluminium honeycomb core and 5mm-thick woven fabric carbon/epoxy face. In order to evaluate structural behavior and safety of the composite carbody, the static load tests such as vertical load, end compressive load, torsional load and 3-point support load tests have been conducted. These tests were performed under Japanese Industrial Standard (JIS) 17105 standard. From the tests, maximum deflection was 12.3mm and equivalent bending stiffness of the carbody was 0.81$\times$10$^{14}$ kgf$\cdot$mm$^{2}$ Maximum stress of the composite body was lower than 12.2$\%$ of strength of the carbon/epoxy. Therefore, the composite body satisfied the Japanese Industrial Standard.

잔교식 안벽의 말뚝 두부 내진 보강기법에 따른 수평재하실험 (Lateral Load Test for Various Aseismatic Methods of Pile Heads of Pier Type Quay Walls)

  • 이용재;한진태;장인성;김명모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.98-106
    • /
    • 2003
  • To construct pile-supported wharf structures that must support heavy horizontal loads, both vertical piles and batter piles are used. Batter piles are used to secure the bearing capacity against the horizontal loads. However, past case histories have shown that the heads of batter piles are vulnerable because these heads are subjected to excessive axial loads during earthquakes. Therefore, the aseismatic reinforcement method must be developed to prevent batter pile heads from breaking due to excessive seismic loads. Two different connecting methods of either inserting rubber or ball-bearing between batter pile head and upper plate were proposed to improve the aseismatic efficiency. Three large-scale pile head models(rubber type model, ball-bearing type model, and fixed type model) were manufactured and horizontal loading tests were peformed for these models. The results showed that the force-displacement relationship of the fixed type model was linear, but that of the rubber type model and the ball-bearing type model was bilinear. The increase in the horizontal displacement led to the increase in the horizontal stiffness of the rubber type models and the decrease in that of the ball-bearing type model. Compared with the values for fixed type model, the damping ratios of the rubber type model and the ball-bearing type model increased about 33~185% and 263~269%, respectively.

  • PDF

An experimental and numerical analysis of concrete walls exposed to fire

  • Baghdadi, Mohamed;Dimia, Mohamed S.;Guenfoud, Mohamed;Bouchair, Abdelhamid
    • Structural Engineering and Mechanics
    • /
    • 제77권6호
    • /
    • pp.819-830
    • /
    • 2021
  • To evaluate the performance of concrete load bearing walls in a structure under horizontal loads after being exposed to real fire, two steps were followed. In the first step, an experimental study was performed on the thermo-mechanical properties of concrete after heating to temperatures of 200-1000℃ with the purpose of determining the residual mechanical properties after cooling. The temperature was increased in line with natural fire curve in an electric furnace. The peak temperature was maintained for a period of 1.5 hour and then allowed to cool gradually in air at room temperature. All specimens were made from calcareous aggregate to be used for determining the residual properties: compressive strength, static and dynamic elasticity modulus by means of UPV test, including the mass loss. The concrete residual compressive strength and elastic modulus values were compared with those calculated from Eurocode and other analytical models from other studies, and were found to be satisfactory. In the second step, experimental analysis results were then implemented into structural numerical analysis to predict the post-fire load-bearing capacity response of the walls under vertical and horizontal loads. The parameters considered in this analysis were the effective height, the thickness of the wall, various support conditions and the residual strength of concrete. The results indicate that fire damage does not significantly affect the lateral capacity and stiffness of reinforced walls for temperature fires up to 400℃.

Analysis and monitoring on jacking construction of continuous box girder bridge

  • Li, Fangyuan;Wu, Peifeng;Yan, Xinfei
    • Computers and Concrete
    • /
    • 제16권1호
    • /
    • pp.49-65
    • /
    • 2015
  • It is hard to guarantee the strict synchronization of all the jacking-up points in the integral jacking of a large-span continuous box girder bridge. This paper took the Hengliaojing Bridge as background, which need jacking up as an object with 295m length and more than 10,000tons weight, adopted 3D software to calculate the unsynchronized jacking-up working conditions, and studied the relationships between the unsynchronized vertical difference and the girder's deformation behaviour. The aim is to verify the maximum value of the unsynchronized vertical difference, and guide the construction and ensure safety. The monitoring system with its contents is introduced corresponding to the analysis. The results of the deck relative elevations prove that it is difficult to avoid the deck torsional deformation for jacking different; especially the side span shows more deformations for its smaller stiffness. The maximum difference is smaller than the limited value with acceptable stresses in the sections. The jacking heights of the pier in each construction step are controlled regularly according to the design. The shifting of the whole bridge in longitudinal direction is smaller than in transverse direction. The several beginning steps are the key to adjust their support reactions. This study is one parts of the fundamental research for the code "Technical specification for bridge jacking-up and reposition of China". The whole synchronous jacking project of the main bridge set a world record by the World Record Association for the whole bridge jacking project with the longest span of the world.

Nonlinear response of stiffened triceratops under impact and non-impact waves

  • Chandrasekaran, Srinivasan;Nassery, Jamshed
    • Ocean Systems Engineering
    • /
    • 제7권3호
    • /
    • pp.179-193
    • /
    • 2017
  • Dynamic response analysis of offshore triceratops with stiffened buoyant legs under impact and non-impact waves is presented. Triceratops is relatively new-generation complaint platform being explored in the recent past for its suitability in ultra-deep waters. Buoyant legs support the deck through ball joints, which partially isolate the deck by not transferring rotation from legs to the deck. Buoyant legs are interconnected using equally spaced stiffeners, inducing more integral action in dispersing the encountered wave loads. Two typical nonlinear waves under very high sea state are used to simulate impact and non-impact waves. Parameters of JONSWAP spectrum are chosen to produce waves with high vertical and horizontal asymmetries. Impact waves are simulated by steep, front asymmetric waves while non-impact waves are simulated using Stokes nonlinear irregular waves. Based on the numerical analyses presented, it is seen that the platform experiences both steady state (springing) and transient response (ringing) of high amplitudes. Response of the deck shows significant reduction in rotational degrees-of-freedom due to isolation offered by ball joints. Weak-asymmetric waves, resulting in non-impact waves cause steady state response. Beat phenomenon is noticed in almost all degrees-of-freedom but values in sway, roll and yaw are considerably low as angle of incidence is zero degrees. Impact waves cause response in higher frequencies; bursting nature of pitch response is a clear manifestation of the effect of impact waves on buoyant legs. Non-impact waves cause response similar to that of a beating phenomenon in all active degrees-of-freedom, which otherwise would not be present under normal loading. Power spectral density plots show energy content of response for a wide bandwidth of frequencies, indicating an alarming behaviour apart from being highly nonlinear. Heave, being one of the stiff degrees-of-freedom is triggered under non-impact waves, which resulted in tether tension variation under non-impact waves as well. Reduced deck response aids functional requirements of triceratops even under impact and non-impact waves. Stiffened group of buoyant legs enable a monolithic behaviour, enhancing stiffness in vertical plane.

하부기둥을 갖는 아치 구조물의 지진응답에 관한 연구 (Seismic Response of the Arch Structure with Column)

  • 강주원;이상훈
    • 한국공간구조학회논문집
    • /
    • 제10권1호
    • /
    • pp.95-102
    • /
    • 2010
  • 공간구조물은 일반 라멘구조와는 다른 동적특성을 가지고 있으며 이런 동적특성에 관해 많은 연구가 수행되고 있다. 그러나 대부분의 연구는 특정 형태의 공간구조물에 대해 수행되었으며 내진설계를 위해 직접적으로 이용 가능한 연구결과는 매우 제한적이다. 본 연구에서는 공간구조물의 기본적인 동적특성을 내재한 트러스-아치구조물을 대상으로 양단의 기둥의 길이가 다른 경우에 트러스 아치구조물의 지진응답변화를 분석하고자 한다. 양단 기둥 길이의 차이에 따라 가속도 응답이 수평방향에 비해 수직방향에서 더 많은 영향을 받는다. 따라서 상부구조물을 지지하는 하부구조물의 강성이 다른 경우에 공간구조물의 내전설계에 있어서 수직방향 응답에 대한 고려가 더욱 많이 요구된다.

  • PDF

하부구조의 강성변화에 따른 대공간구조물의 지진거동 (Seismic Response of Large Space Structure with Various Substructure)

  • 김기철;강주원;고현
    • 한국공간구조학회논문집
    • /
    • 제10권3호
    • /
    • pp.81-90
    • /
    • 2010
  • 대공간구조물은 일반 라멘구조와는 다른 동적특성을 가지고 있으며, 이런 동적특성에 관해 많은 연구가 수행되고 있다. 그러나 대부분의 연구는 특정 형태의 대공간구조물에 대해 수행되었으며, 내진설계를 위해 직접적으로 이용 가능한 연구결과는 매우 제한적이다. 본 연구에서는 대공간구조물의 기본적인 동적특성을 내재한 트러스-아치구조물을 대상으로 양단의 기둥의 길이가 다른 경우에 트러스-아치구조물의 지진응답변화를 분석하고자 한다. 양단 기둥 길이의 차이에 따라, 가속도 응답이 수평방향에 비해 수직방향에서 더 많은 영향을 받는다. 따라서 상부구조물을 지지하는 하부구조물의 강성이 다른 경우에 대공간구조물의 내진설계에 있어서 수직방향 응답에 대한 고려가 더욱 많이 요구된다.

  • PDF

Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing

  • Hwang, Yongmoon;Lee, Chan Woo;Lee, Junghoon;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • 제25권3호
    • /
    • pp.323-335
    • /
    • 2020
  • Magnetorheological elastomer (MRE), a smart material, is an innovative material for base isolation system. It has magnetorheological (MR) effect that can control the stiffness in real-time. In this paper, a new hybrid base isolation system combining two electromagnetic closed circuits and the roller bearing is proposed. In the proposed system, the roller part can support the vertical load. Thus, the MRE part is free from the vertical load and can exhibit the maximum MR effect. The MRE magnetic loop is constructed in the free space of the roller bearing and forms a strong magnetic field. To demonstrate the performance of the proposed hybrid base isolation system, dynamic characteristic tests and performance evaluation were carried out. Dynamic characteristic tests were performed under the extensive range of strain of the MRE and the change of the applied current. Performance evaluation was carried out using the hybrid simulation under five earthquakes (i.e., El Centro, Kobe, Hachinohe, Northridge, and Loma Prieta). Especially, semi-active fuzzy control algorithm was applied and compared with passive type. From the performance evaluation, the comparison shows that the new hybrid base isolation system using fuzzy control algorithm is superior to passive type in reducing the acceleration and displacement responses of a target structure.