• 제목/요약/키워드: Vertical structure

검색결과 2,424건 처리시간 0.028초

지하구조물 부력방지를 위한 연직배수시스템의 적용성 연구 (A Study on the Application of Vertical Drainage System for Resisting Uplift of Sub-structure)

  • 천병식;여유현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.183-190
    • /
    • 2001
  • A sub-structure is uplift if the floating greater than dead load of a structure. When such occasion arise, a structure sustain damage. In general, the measures for floating prevention of structure are a permanent anchor method and a drainage method. The primary construction cost of a permanent anchor method is heavy. And a drainage method is needed maintenance management long term. At this point, the measures for floating prevention of a notion being requires the other days. Therefore, at this study a simple construction and a economic vertical drainage system was developed. The findings be used in the in-situ and gave careful consideration to an application. The result of examination, this system considering a characteristic of coefficient of permeability for the ground controls occurrence of floating despite the water level rise of the ground, which a period of construction get shorter compared with other methods, which understood that measures satisfactory in the financial aspect. Especially, A structure occurring effects of flatting under the course of construction made use of it. As the result of the effect of it was confirmed by construction.

  • PDF

균질화법을 이용한 수직형 롤러 분쇄기용 테이블 라이너의 위상최적설계에 관한 연구 (A Study on Topology Optimization of Table Liner for Vertical Roller Mill using Homogenization Method)

  • 이동우;홍순혁;조석수;이선봉;주원식
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.113-122
    • /
    • 2003
  • Topology optimization is begun with layout optimization that is attributed to Rozvany and Prager of the 1960's. They claimed that structure was transformed into truss connecting all the nodes of finite element and optimized by control of its sectional modulus. But, this method is partial topology optimization. General layout optimal design appliable to continum structure was proposed by Bendsoe and Kikuchi in 1988. Topology optimization expresses material stiffness of structure into function of arbitrary variable. If this variable is 1, material exists but if this variable is 0, material doesn't exist. Therefore, topology optimization searches the distribution function of material stiffness for structure. There are a few researchs for simple engineering problem such as topology optimization of square plane structure or truss structure. So, This study applied to topology optimization of table liner for vertical roller mill that is the largest scale in the world. After table liner decreased by 20% of original weight, the structure analysis for first optimized model was performed.

머신러닝 기법을 이용한 산림의 층위구조 분류 (Classification of Forest Vertical Structure Using Machine Learning Analysis)

  • 권수경;이용석;김대성;정형섭
    • 대한원격탐사학회지
    • /
    • 제35권2호
    • /
    • pp.229-239
    • /
    • 2019
  • 모든 식생 군락은 각자 층위구조를 가지고 있다. 이를 '식생층위구조'라 부른다. 요즈음은 이 층위구조가 산림의 활력도, 다양성, 그리고 환경영향을 평가하는데 중요한 식별자로 작용하기 때문에 산림조사에 있어서 식생층위구조는 필수적으로 조사되어야한다. 그런데, 식생층위구조는 일종의 내부구조이므로 일반적으로 산림조사는 현장조사를 통해 이루어지는데, 이는 전통적인 방식으로 시간과 예산이 많이 든다. 따라서 본 연구에서는 산림의 층위구조를 조사하는데 드는 시간과 예산을 줄이기 위해 넓은 지역 탐사에 효과적인 원격탐사기법 중 항공촬영 사진과 대량의 데이터 마이닝(Data Mining)이 가능한 머신러닝(Machine Learning)기법 이용한 층위구조의 분류 방법을 제시한다. 칼라 항공사진, LiDAR(Light Detection and Ranging) DSM(Digital Surface Model)과 DTM(Digital Terrain Model)을 이용하여 Support Vector Machine(SVM) 머신러닝 기법을 이용하여 층위분류 연구를 진행하였다. 현장조사 자료를 참조하여 SVM기법 분류 결과와 비교했을 때 픽셀수에 기반한 정확도는 66.22%로 확인 되었다. 층위 분류 정확도는 단층과 다층의 구분은 비교적 높게 나타났으나, 다층끼리의 분류는 어렵다는 결론이 나타났다. 이러한 연구결과는 향후 다양한 식생데이터와 영상자료를 수집한다면 식생구조에 대한 머신러닝 연구분야에 더욱 발전이 가능할 것으로 기대된다.

수직구조물 후방의 와류현상이 구조물에 설치된 벤투리관의 유체가속 효과에 미치는 영향에 관한 해석 연구 (Effect of Rear-Vortex of a Convergent-Divergent Duct on the Flow Acceleration Installed in a Vertical Structure)

  • 정광섭;김철호;조현성
    • 설비공학논문집
    • /
    • 제25권2호
    • /
    • pp.94-100
    • /
    • 2013
  • A convergent-divergent nozzle or venturi nozzle has been used to accelerate the wind speed at its throat. The wind speed at the throat is inversely proportional to its area according to the continuity equation. In this numerical study, an airflow phenomena in the venturi system placed at a vertical structure was investigated to understand the vortex effect occurred at the rear-side of the vertical structure on the air speed increment at the throat of the venturi system. For this study, a venturi system sized by $20(m){\times}20(m){\times}6(m)$ was modelled and the area ratio(AR) of the model venturi was 2.86. To see the vortex effect on the air flow acceleration in the venturi throat, two different boundary conditions was defined From the study, it was found that the pressure coefficient(CP) of the venturi system with the vortex formed at the exit of the venturi was about 2.5times of the CP of the venturi system without the vortex effect. The velocity increment rate of the venturi system with the vortex was 61% but 9.5% only at the venturi system without the vortex. Conclusively, it can be said that the venturi system installed in a vertical structure has very positive effect on the flow acceleration at its throat due to the vortex formed at the rear-side of the vertical structure.

Potentiality of Using Vertical and Three-Dimensional Isolation Systems in Nuclear Structures

  • Zhou, Zhiguang;Wong, Jenna;Mahin, Stephen
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1237-1251
    • /
    • 2016
  • Although the horizontal component of an earthquake response can be significantly reduced through the use of conventional seismic isolators, the vertical component of excitation is still transmitted directly into the structure. Records from instrumented structures, and some recent tests and analyses have actually seen increases in vertical responses in base isolated structures under the combined effects of horizontal and vertical ground motions. This issue becomes a great concern to facilities such as a Nuclear Power Plants (NPP), with specialized equipment and machinery that is not only expensive, but critical to safe operation. As such, there is considerable interest worldwide in vertical and three-dimensional (3D) isolation systems. This paper examines several vertical and 3D isolation systems that have been proposed and their potential application to modern nuclear facilities. In particular, a series of case study analyses of a modern NPP model are performed to examine the benefits and challenges associated with 3D isolation compared with horizontal isolation. It was found that compared with the general horizontal isolators, isolators that have vertical frequencies of no more than 3 Hz can effectively reduce the vertical in-structure responses for the studied NPP model. Among the studied cases, the case that has a vertical isolation frequency of 3 Hz is the one that can keep the horizontal period of the isolators as the first period while having the most flexible vertical isolator properties. When the vertical frequency of isolators reduces to 1 Hz, the rocking effect is obvious and rocking restraining devices are necessary.

Seismic performance of R/C structures under vertical ground motion

  • Bas, Selcuk;Lee, Jong-Han;Sevinc, Mukadder;Kalkan, Ilker
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.369-380
    • /
    • 2017
  • The effects of the vertical component of a ground motion on the earthquake performances of semi-ductile high-rise R/C structures were investigated in the present study. Linear and non-linear time-history analyses were conducted on an existing in-service R/C building for the loading scenarios including and excluding the vertical component of the ground motion. The ratio of the vertical peak acceleration to the horizontal peak acceleration (V/H) of the ground motion was adopted as the main parameter of the study. Three different near-source earthquake records with varying V/H ratio were used in the analyses. The linear time-history analyses indicated that the incorporation of the vertical component of a ground motion into analyses greatly influences the vertical deflections of a structure and the overturning moments at its base. The lateral deflections, the angles of rotation and the base shear forces were influenced to a lesser extent. Considering the key indicators of vertical deflection and overturning moments determined from the linear time-history analysis, the non-linear analyses revealed that the changes in the forces and deformations of the structure with the inclusion of the vertical ground motion are resisted by the shear-walls. The performances and damage states of the beams were not affected by the vertical ground motion. The vertical ground motion component of earthquakes is markedly concluded to be considered for design and damage estimation of the vertical load-bearing elements of the shear-walls and columns.

Precipitation Structure on Ground-Based Radar

  • Ha, Kyung-Ja;Oh, Hyun-Mi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.358-360
    • /
    • 2002
  • In order to find horizontal and vertical precipitation structure in Korean peninsula, we use ground-based radar, and Automatic Weather Station (AWS) data. Radar data was selected for rain events in the Pusan and Jindo in Korea, during the spring and summer season of 2002. AWS point gauge measurements are analyzed as part of spatial structure of precipitation. TRMM/PR and ground-based radar is used vertical correlation. The results showed, as expected that the correlation decreased rapidly with distance.

  • PDF

Effects of traffic-induced vibrations on bridge-mounted overhead sign structures

  • Kim, Janghwan;Kang, Jun Won;Jung, Hieyoung;Pack, Seung-woo
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.365-377
    • /
    • 2015
  • Large-amplitude vibration of overhead sign structures can cause unfavorable psychological responses in motorists, interfere with readability of the signs, and lead to fatigue cracking in the sign structures. Field experience in Texas suggests that an overhead sign structure can vibrate excessively when supported within the span of a highway bridge instead of at a bent. This study used finite element modeling to analyze the dynamic displacement response of three hypothetical sign structures subjected to truck-passage-induced vertical oscillations recorded for the girders from four actual bridges. The modeled sign bridge structures included several span lengths based on standard design practices in Texas and were mounted on precast concrete I-girder bridges. Results revealed that resonance with bridge girder vertical vibrations can amplify the dynamic displacement of sign structures, and a specific range of frequency ratios subject to undesirable amplification was identified. Based on these findings, it is suggested that this type of sign structure be located at a bridge bent if its vertical motion frequency is within the identified range of bridge structure excitation frequencies. Several alternatives are investigated for cases where this is not possible, including increasing sign structure stiffness, reducing sign mass, and installing mechanical dampers.

납고무받침 면진장치와 마찰진자 면진장치에 의한 트러스-아치 구조물의 지진거동 비교 (The Seismic Behavior of the Truss-Arch Structure by Lead Rubber Bearing and Friction Pendulum System with Seismic Isolation)

  • 김기철;석근영;강주원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.374-379
    • /
    • 2008
  • The purpose of seismic isolation system among them is to lengthen the period of structure and make its period shift from the dominant period of earthquake. In this study, the seismic behavior of arch structure with lead rubber bearing(LRB) and friction pendulum system(FPS) is analyzed. The arch structure is the simplest structure and has the basic dynamic characteristics among large spatial structures. Also, Large spatial structures have large vertical response by horizontal seismic vibration, unlike seismic behavior of normal rahmen structures. When horizontal seismic load is applied to the large spatial structure with isolation systems, the horizontal acceleration response of the large spatial structure is reduced and the vertical seismic response is remarkably reduced.

  • PDF