• Title/Summary/Keyword: Vertical stress distribution

Search Result 335, Processing Time 0.032 seconds

Study on the distribution law of stress deviator below the floor of a goaf

  • Li, Zhaolong;Shan, Renliang;Wang, Chunhe;Yuan, Honghu;Wei, Yonghui
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.301-313
    • /
    • 2020
  • In the process of mining closely spaced coal seams, the problem of roadway arrangement in lower coal seams has long been a concern. By means of mechanical model calculation and numerical simulation postprocessing, the distribution of the stress deviator below the floor of a goaf and the evolution of the stress deviator in the vertical and horizontal directions are studied under the influence of horizontal stress. The results of this theoretical study and numerical simulation show that the stress deviator decreases exponentially with increasing depth from the floor below the coal side. With the increase in the horizontal stress coefficient λ, the stress deviator concentration area shifts. The stress deviator is concentrated within 10 m below the goaf and 15 m laterally from the coal side; thus, the magnitude of the surrounding rock stress deviator should be considered when planning the construction of a roadway in this area.

Three dimensional finite element analysis of the stress distribution around the mandibular posterior implant during non-working movement according to the amount of cantilever

  • Park, Ji-Man;Kim, Hyun-Joo;Park, Eun-Jin;Kim, Myung-Rae;Kim, Sun-Jong
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.361-371
    • /
    • 2014
  • PURPOSE. In case of large horizontal discrepancy of alveolar ridge due to severe resorption, cantilevered crown is usually an unavoidable treatment modality. The purpose of this study was to evaluate the clinical criteria for the placement of the aforementioned implant crown. MATERIALS AND METHODS. The mandible model with 2 mm thick cortical bone and cancellous bone was fabricated from CT cross-section image. An external connection type implant was installed and cantilevered crowns with increasing offset of 3, 4, 5, 6, and 7 mm were connected. Vertical load and $30^{\circ}$ oblique load of 300 N was applied and stress around bone and implant component was analyzed. A total of 14 cases were modeled and finite element analysis was performed using COSMOS Works (Solid works Inc, USA). RESULTS. As for the location of the vertical load, the maximum stress generated on the lingual side of the implant became larger according to the increase of offset distance. When the oblique load was applied at $30^{\circ}$, the maximum stress was generated on the buccal side and its magnitude gradually decreased as the distance of the offset load increased to 5 mm. After that point, the magnitude of implant component's stress increased gradually. CONCLUSION. The results of this study suggest that for the patient with atrophied alveolar ridge following the loss of molar teeth, von-Mises stress on implant components was the lowest under the $30^{\circ}$ oblique load at the 5 mm offset point. Further studies for the various crown height and numbers of occusal points are needed to generalize the conclusion of present study.

탄.소성 Work-Hardening 모델에 대한 Program 개발 -Lade 모델을 중심으로-

  • 박병기;정진섭
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.255-270
    • /
    • 1991
  • In recent years. finite element methods have been used with increasing effectiveness in analysis of displacements and stresses within soil masses. However, one of the weakest links in the analytical representations used in these methods is the models of the material behaviour. Herein is discribed a modification to the finite element methods that allows solution problems with realistic stress-strain relation for soils. A finite element program for the precision prediction of the stress distribution within foundation has been developed using the elasto-plastic Work-Hardening model. The developed program is verified by comparing the results of this study with the tested results for Sacramento river sand. The main results obtained from the numerical examples are as follows: The vertical total stress increments are insensitive to drainage and constitutive equation of materials. The horizontal total stress increments are considerably affected by the drainage and constitutive equation of materials. The maximum shear stresses are affected by the drainage only in elasto-ptastic meterirals. The excess pore water pressures and the volumetric strains not only are considerably affected by the constitutive equation of materials. but also have almost similar distribution.

  • PDF

A PHOTOELASTIC STRESS ANALYSIS ON THE SUPPOTING STRUCTURE IN THE MANDIBULAR DISTAL EXTENSION REMOVABLE PARTIAL DENTURE WITH VARIOUS DESINGS OF BACK-ACT10N CLASPS (하악 유리단 국소의치하에서 back-action 클래스프 설계 변화에 따른 광탄성 응력 분석)

  • Lim Soo-Lyoung;Kay Kee-Sung;Ko Yeong-Mu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.3
    • /
    • pp.379-400
    • /
    • 1992
  • The purpose of this study was to analyze the magnitude and distribution of stress using a photoelastic model from the mandibular distal extension removable partial dentures with the mesial or distal placement of the occlusal rest and the mesial or distal connection in the back-action clasp with the five various designs of the back-action clasp, that is, the mesial connection and the distal rest, the distal connection and mesial rest, the mesial connection and mesial rest, the distal connection and the mesial and distal rest, and the mesial connection, and the mesial and distal rest. A photoelastic model was made of the epoxy resin(PC-1) and the hardner(PLH-1) with the acrylic resin teeth used and was coated with the plastic cement-1 at the lingual surface of the model and then five kinds of the removable partial dentures on the photoelastic model were set. A unilateral vertical load of 12.5 kg was applied on the central fossa of the first molar with the use of specially designed loading device and the pattern and distribution of the stress of the photoelastic model under each condition was analyzed by the reflective circular polariscope. The following results were obtained. 1. In the back-action clasp with the mesial connection and mesial rest of the case 3, the effect of the stress distribution was the most favorable. 2. In the back-action clasp with the mesial and distal rest, of the case 4 and 5, the stress distribution was more greatly showed in the terminal abutment. 3. Generally, the stress distribution was more favarable in the mesial connection than in the distal connection. 4. In the back-action clasp with the mesial connection of the case 1, 3 and 5, the stress distribution was the most favorable in the mesial rest.

  • PDF

FINITE ELEMENT ANALYSIS OF STRESSES INDUCED BY OSSEOINTEGRATED PROSTHESES WITH OR WITHOUT CONNECT10N BETWEEN NATURAL TOOTH AND OSSEOINTEGRATED ABUTMENTS (골 유착성 임프란트 보철수복시 자연지대치와의 고정유무에 따른 유한요소법적 응력분석)

  • Ko, Heon-Ju;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.147-160
    • /
    • 1991
  • The purpose of this study was to examine, by the method of finite element analysis, how implant geometry with or without connection between natural tooth and osseointegrated abutments affected the stress distribution in surrounding bone and osseointegrated prosthesis. The mandibular first and second molars were removed and the two osseointegrated implants were placed in the first and second molar sites. Stress analysis induced by prostheses with connection(Model A)or without connection(Model B) between natural tooth(second bicuspid) and two osseointegrated abutments(first molar and second molar) was performed under vertical point load(Load P1) or distributed point load(Load P2). The results were as follows; 1. Under vertical point load, mesial tilting was shown in both Model A and Model B and inferior displacement of Model A was greater than that of Model B in the second bicuspid. 2. Under vortical point load, the first and second molars showed mesial tilting in both Model A and Model B, and inferior displacement of them was similar in Model A and Model B and was less than that of the second bicuspid. 3. Under distributed point load, mesial displacement was shown in Model A and Model B and inferior displacement of Model A was less than that of Model B in the second bicuspid. 4. Under distributed point load, mesial tilting was shown and inferior displacement of Model A was similar to that of Model B in the first and second molars. 5. In Model A under vertical point load, high stress was concentrated in the corneal portion of first molar and distributed throughout the second molar and the second bicuspid, and the stress distribution of the second molar was greater than that of the second bicuspid. 6. In Model B under vertical point load, high stress was concentrated in the coronal and mesio-cervical portion of the first molar. 7. In Model A under distributed point load, high stress was concentrated in the mesio-cervical portion of the first molar and evenly distributed throughout the second molar and the second bicuspid. 8. In Model B under distributed point load, high stress was concentrated in the disto-cervical portion of the second bicuspid and evenly distributed throughout the first and second molars.

  • PDF

STRESS ANALYSIS OF SUPPORTING TISSUES AND IMPLANTS ACCORDING TO IMPLANT FIXTURE SHAPES AND IMPLANT-ABUTMENT CONNECTIONS (임플랜트 고정체의 형태와 연결방식에 따른 임플랜트 및 지지조직의 응력분포)

  • Han Sang-Un;Park Ha-Ok;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.226-237
    • /
    • 2004
  • Purpose: Four finite element models were constructed in the mandible having a single implant fixture connected to the first premolar-shaped superstructure, in order to evaluate how the shape of the fixture and the implant-abutment connection would influence the stress level of the supporting tissues fixtures, and prosthethic components. Material and methods : The superstructures were constructed using UCLA type abutment, ADA type III gold alloy was used to fabricate a crown and then connected to the fixture with an abutment screw. The models BRA, END , FRI, ITI were constructed from the mandible implanted with Branemark, Endopore, Frialit-2, I.T.I. systems respectively. In each model, 150 N of vertical load was placed on the central pit of an occlusal plane and 150 N of $40^{\circ}$ oblique load was placed on the buccal cusp. The displacement and stress distribution in the supporting tissues and the other components were analysed using a 2-dimensional finite element analysis . The maximum stress in each reference area was compared. Results : 1. Under $40^{\circ}$ oblique loading, the maximum stress was larger in the implant, superstructure and supporting tissue, compared to the stress pattern under vertical loading. 2. In the implant, prosthesis and supporting tissue, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 3. In the superstructure and implant/abutment interface, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 4. In the implant fixture, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 5 The stress was more evenly distributed in the bone/implant interface through the FRI of trapezoidal step design. Especially Under $40^{\circ}$ oblique loading, The maximum stress was smallest in the bone/implant interface. 6. In the implant and superstructure and supporting tissue, the maximum stress occured at the crown loading point through the ITI. Conclusion: The stress distribution of the supporting tissue was affected by shape of a fixture and implant-abutment connection. The magnitude of maximum stress was reduced with the internal connection type (FRI) and the morse taper type (ITI) in the implant, prosthesis and supporting tissue. Trapezoidal step design of FRI showed evenly distributed the stress at the bone/implant interface.

Influence of changing various parameters in miniscrew-assisted rapid palatal expansion: A three-dimensional finite element analysis

  • Yoon, Soungjun;Lee, Dong-Yul;Jung, Seok-Ki
    • The korean journal of orthodontics
    • /
    • v.49 no.3
    • /
    • pp.150-160
    • /
    • 2019
  • Objective: This study aimed to analyze the effect of changing various parameters of the bone-borne rapid palatal expander (RPE) using the finite element method (FEM). Methods: In eight experimental groups, we investigated the effect of the number, position, and length of miniscrews; positional changes of the expander; and changes in the hook length on maxillary expansion. In finite element analysis, we compared the magnitude and distribution of stress, and the displacement changes following expansion of the bone-borne RPE. Results: When we compared the number and position of miniscrews, placing miniscrews in the anterior and posterior sides was advantageous for maxillary expansion in terms of stress distribution and displacement changes. Miniscrew length did not significantly affect stress distribution and displacement changes. Furthermore, anteroposterior displacement of the expander did not significantly affect transverse maxillary expansion but had various effects on vertical changes of the maxilla. The maxilla rotated clockwise when the miniscrews were placed in the anterior region. The hook length of the expander did not show consistent results in terms of changes in stress distribution and magnitude or in displacement changes. Conclusions: The findings of this study suggest that changes in the location and length of the miniscrews and displacement of the bone-borne RPE could affect the pattern of the maxillary expansion, depending on the combination of these factors.

Three Dimensional In-situ Stress Distribution in the Southern Korean Peninsula and Its Application in Tunnel Analysis (한반도 3차원 지중응력의 분포와 이를 고려한 터널해석에 대한 연구)

  • 김동갑;박종관
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.65-74
    • /
    • 2002
  • The measurement of in-situ stress is essential to estimate the ground displacement and the stress distribution of a tunnel and an underground structure. In this study, the in-situ stress distribution of the Southern Korean peninsula was re-evaluated by the new 380 in-situ data which were determined by overcoring and hydrofracturing methods, and the three-din erosional numerical analysis of tunnelling was performed. The results of in-situ stress distribution show that the distribution of horizontal stress tends to be more irregular in metamorphosed(gneiss) and granite areas than in sedimentary and volcanic areas. The ratio of horizontal to vertical stresses(K-value) in volcanic area is less than 1 below the depth of 150m. The direction and magnitude of three dimensional in-situ stresses were shown simultaneously in a figure for the first time in Korea. The three-dimensional numerical analysis of tunnelling indicates that the orientation and magnitude of displacement around a tunnel are controlled mainly by the difference between the maximum and minimum horizontal stresses.

Finite Element Analysis on the Supporting Bone according to the Connection Condition of Implant Prosthesis (임플란트 보철물의 연결 여부에 따른 유한요소응력분석)

  • Kang, Jae-Seok;Jeung, Jei-Ok;Lee, Seung-Hoon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • The purpose of this study was to compare the stress distribution according to the splinting condition and non-splinting conditions on the finite element models of the two units implant prostheses. The finite element model was designed with the parallel placement of two fixtures ($4.0mm{\times}11.5mm$) on the mandibular 1st and 2nd molars. A cemented abutment and gold screw were used for superstructures. A FEA models assumed a state of optimal osseointegration, as the bone quality, inner cancellous bone and outer 2 mm compact bone was designed. This concluded that the cortical and trabecular bone were assumed to be perfectly bonded to the implant. Splinting condition had 2 mm contact surface and non-splinting condition had $8{\mu}m$ gap between two implant prosthesis. Two group (Splinting and non-splinting) were loaded with 200 N magnitude in vertical axis direction and were divided with subdivision group. Subdivision group was composed of three loading point; Center of central fossa, the 2 mm and 4 mm buccal offset point from the central fossa. Von Mises stress value were recorded and compared in the fixture-bone interface and bucco-lingual sections. The results were as follows; 1. In the vertical loading condition of central fossa, splinting condition had shown a different von Mises stress pattern compared to the non-splinting condition, while the maximum von Mises stress was similar. 2. Stresses around abutment screw were more concentrated in the splinting condition than the non-splinting condition. As the distance from central fossa increased, the stress concentration increased around abutment screw. 3. The magnitude of the stress in the cortical bone, fixture, abutment and gold screw were greater with the 4 mm buccal offset loading of the vertical axis than with the central loading.

FINITE ELEMENT ANALYSIS ON MAXILLARY MOLAR IMPLANT UNDER DIFFERENT C/R RATIO (상악 구치부 임플랜트 보철수복시 치관/치근비에 따른 응력 분포에 대한 유한 요소 분석)

  • Kim, Jin-Ho;Kim, Hyung-Seob;Choi, Dae-Gyun;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.561-573
    • /
    • 2006
  • Statement of the problem: In cases of low bone level in maxilla followed by extraction due to severe periodontitis or enlarged maxillary sinus, crown-root ratio of implant prosthesis will increase. The prognosis of these cases is not good as expected. Purpose : The purpose is to compare stress distribution due to crown-root ratio and effect of splinting between two implants in maxillary molar area under different loads Material and methods: Using ITI($4.1{\times}10$ mm) implant. two finite element models were made(model S: two parallel implants, model A: one of two is 20 degree inclined). Each model was designed in different crown-root ratio(0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it splinted or non-splinted clinical situations. After that, 300 N force was loaded to each model in four ways.(load 1 : middle of occlusal table, load 2 : middle of buccal cusp, load 3 : middle of lingual cusp, load 4 : horizontal load to middle of buccal cusp), and stress distribution was analyzed. Results: On all occasions, stress was concentrated on neck of implant near cortical bone. In the case of inclined implant, stress was increased compared with parallel implants. Under load 1, 2, 3, stress was not increased even when crown-root ratio increases, but under load 4, when crown-root ratio increases, stress also increased. And more stress was concentrated under load 1 than load 2, 3. When crown-root ratio was same, stress under load 1, 2, 3 decreased when splinting, but under load 4, stress did not really decrease. Conclusion: Under vertical load, stress distribution related to crown-root ratio did not change. But under horizontal load, stress increased as crown-root ratio increases. Under vertical load, splinting decreased stress but under horizontal load, effect of splinting was decreased as condition of implant changes for the worse such as increase of crown-root ratio, inclined implant.