• Title/Summary/Keyword: Vertical stability

Search Result 903, Processing Time 0.027 seconds

Comparison of stress analysis tools for ocean vertical pile under environmental loads (해양 수직 파일(Vertical Pile)에 작용하는 환경 하중하의 응력 해석 기법 비교)

  • 조철희;김병환;김두홍
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.121-127
    • /
    • 2001
  • To investigate the stability and integrity of offshore structures, it is necessary to estimates the significant ocean environmental loadings. They include hydrostatic pressure, wind, wave, current, tide, ice, earthquake, temperature, marine growth and scouring. Waves are of major importance among them because of the large forces acting on submerged parts of the structure caused by accompanying water motions. For the comparison of stress and deflection analysis tools, a vertical pile is applied under environmental loads. The analysis is concerned with SACS(Structural Analysis Computer System), ANSYS and C program. SACS and C program have nearly the same results but not ANSYS. This study shows the comparison of results obtained from 3 different approaches.

  • PDF

Consideration of Vertical Position for predictable posterior implant - Deep implantation for Implant Biologic width (예지성 있는 구치부 임플란트를 위한 임플란트의 수직적 깊이에 대한 고려 Implant Biologic width를 위한 Deep Implantation)

  • Yun, Woo-Hyuk
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.28 no.1
    • /
    • pp.27-41
    • /
    • 2019
  • For predictable posterior implants, appropriate soft tissue thickness, called the biologic width, is required around the implant for crestal bone stability. In order to do so, it seems that there are many cases where the implant should be positioned deeper than the depth that we previously thought was appropriate or inevitable limit. I would like to share my clinical experience about the vertical position of the posterior implant with the case reports and the related surgical technique.

A Vertical Line Following Guidance Law Design (수직면 직선추종유도법칙 설계)

  • Whang, Ick-Ho;Cho, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1309-1313
    • /
    • 2010
  • In this paper, we propose a novel guidance law for controlling an UAV(Unmanned Air-Vehicle) to follow a reference line in vertical plane. A kinematics model representing the relative motion of the UAV to the reference line is derived. And then LQR(Linear Quadratic Regulator) theory is applied to the model to derive the VLFG(Vertical Line Following Guidance) law. The resultant guidance law forms a gain-scheduling controller scheduled by a simple parameter $\sigma$ which is a function of the UAV's velocity, axial acceleration, gravity, and the slope of the reference line. Also derived is a stability condition for the $\sigma$ variation based on Lyapunov theory. Simulation results show that the proposed guidance law can be applied effectively to UAV guidance algorithm design.

Settlement Reduction Effect of Advanced Back-to-Back Reinforced Retaining Wall

  • Koh, Taehoon;Hwang, Seonkeun;Jung, Hunchul;Jung, Hyuksang
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.107-111
    • /
    • 2013
  • In order to constrain the railway roadbed settlement which causes track irregularity, and thus threats running stability and ride quality, advanced Back-to-Back (BTB) reinforced retaining wall was numerically analyzed as railway roadbed structure. This study is intended to improve conventional Back-to-Back reinforced retaining wall as the technology which would reduce the roadbed settlement in a way of constraining the lateral displacement of its prestressed vertical facing and inducing arching effects in roadbed (backfill) placed between masonry diaphragm wall and vertical facing. As a result of numerical analysis, it was found that the roadbed settlement was reduced by 10% due to the prestressed vertical facing and embedded masonry diaphragm wall of the advanced Back-to-Back reinforced retaining wall system.

Fluid-Structural Interaction Analysis of Vertical Wind Turbine Combined with Antenna (안테나 결합형 수직 풍력터빈의 유체 구조 연성 해석)

  • Kim, Seong-Hwan;Kim, Ick-Tae
    • Journal of Advanced Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.237-243
    • /
    • 2018
  • The purpose of this study is to develop a vertical wind turbine with antenna structure in microgird environment. Computational fluid dynamics (CFD) was used to calculate the basic aerodynamic performance. The pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition and the Fluid Structure Interaction (FSI) was applied. The stability of the wind turbine was confirmed by checking the deformation and internal stress of wind turbine by wind force.

A comparison of structural performance enhancement of horizontally and vertically stiffened tubular steel wind turbine towers

  • Hu, Yu;Yang, Jian;Baniotopoulos, Charalambos C.;Wang, Feiliang
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.487-500
    • /
    • 2020
  • Stiffeners can be utilised to enhance the strength of thin-walled wind turbine towers in engineering practise, thus, structural performance of wind turbine towers by means of different stiffening schemes should be compared to explore the optimal structural enhancement method. In this paper two alternative stiffening methods, employing horizontal or vertical stiffeners, for steel tubular wind turbine towers have been studied. In particular, two groups of three wind turbine towers of 50m, 150m and 250m in height, stiffened by horizontal rings and vertical strips respectively, were analysed by using FEM software of ABAQUS. For each height level tower, the mass of the stiffening rings is equal to that of vertical stiffeners each other. The maximum von Mises stresses and horizontal sways of these towers with vertical stiffeners is compared with the corresponding ring-stiffened towers. A linear buckling analysis is conducted to study the buckling modes and critical buckling loads of the three height levels of tower. The buckling modes and eigenvalues of the 50m, 150m and 250m vertically stiffened towers were also compared with those of the horizontally stiffened towers. The numbers and central angles of the vertical stiffeners are considered as design variables to study the effect of vertical stiffeners on the structural performance of wind turbine towers. Following an extensive parametric study, these strengthening techniques were compared with each other and it is obtained that the use of vertical stiffeners is a more efficient approach to enhance the stability and strength of intermediate and high towers than the use of horizontal rings.

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.

Evaluation of Skeletal Stability Following Two-jaw Surgery via Surgery First Orthodontic Treatment in Class III Malocclusion (III급 부정교합에서 선수술 교정치료를 통한 양악 수술 후 안정성)

  • Hwang, Dae-Seok;Kim, Yong-Il;Lee, Jae-Yeol;Lee, Seong-Tak;Kim, Tae-Hoon;Lee, Joo-Min;Ahn, Kyung-Yong
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.5
    • /
    • pp.407-412
    • /
    • 2011
  • Purpose: The purpose of the present study was to evaluate the postoperative skeletal stability of two-jaw surgery (Le Fort I osteotomy and bilateral sagittal split ramus osteotomy) via surgery first orthodontic treatment (SFOT) in class III malocclusion. Methods: Thirty-two patients who had two-jaw surgery via SFOT were included in this study. Serial lateral cephalograms were obtained before (T0), immediately after (T1), and six months after (T2) surgery. Twelve variables were measured for horizontal and vertical skeletal stability as well as for dental change. All measurements were evaluated statistically by a paired t-test ($P$ <0.05). Results: The mean skeletal changes were $0.1{\pm}2.5$ mm at point A and $-12.0{\pm}7.4$ mm at the pogonion. The mean horizontal relapse was 11.6% at the pogonion, and the mean vertical surgical changes included an upward displacement of $2.1{\pm}7.1$ mm and a forward displacement of $1.4{\pm}4.6$ mm at the pogonion. Upper incisor inclination decreased after surgery and was maintained at T2, and lower incisors were proclined from T1 to T2 by postsurgical orthodontic treatment. Conclusion: Postoperative skeletal stability of two-jaw surgery via surgery first orthodontic treatment in class III malocclusion was clinically acceptable.

Effect of Thermal Compression Treatment on the Surface Hardness, Vertical Density Propile and Thickness Swelling of Eucalyptus Wood Boards by Hot-pressing

  • Unsal, Oner;Candan, Zeki;Buyuksari, Umit;Korkut, Suleyman;Chang, Yoon-Seong;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.148-155
    • /
    • 2011
  • Thermal treatment techniques are used for modifying wood and wood-based materials to improve dimensional stability and hygroscopicity. This study investigated the effects of press pressure and temperature on density, vertical density profile, thickness swelling and surface hardness of eucalyptus wood boards. The experimental wood boards were prepared from Turkish River Gum ($Eucalyptus$ $camaldulensis$ Dehn.). The surface hardness value increased with increasing press pressure in the treated groups. The application of a higher pressure at the same temperature level increased the amount of swelling of wood. It means that it is not needed for application of higher pressure to enhance the dimensional stability of wood. It is expected that it is possible to produce increased hardness, dimensional stability and durability by application of hot pressing treatment. This research showed that different press pressure and temperature values should be used to improve the performance properties of eucalyptus wood so that the end-use of the wood materials could be expanded.

Stability of bimaxillary surgery involving intraoral vertical ramus osteotomy with or without presurgical miniscrew-assisted rapid palatal expansion in adult patients with skeletal Class III malocclusion

  • Ahn, Yoon-Soo;Choi, Sung-Hwan;Lee, Kee-Joon;Jung, Young-Soo;Baik, Hyoung-Seon;Yu, Hyung-Seog
    • The korean journal of orthodontics
    • /
    • v.50 no.5
    • /
    • pp.304-313
    • /
    • 2020
  • Objective: The aim of this study was to evaluate the stability of bimaxillary surgery involving bilateral intraoral vertical ramus osteotomy performed with or without presurgical miniscrew-assisted rapid palatal expansion (MARPE) in adult patients with skeletal Class III malocclusion. Methods: A total of 40 adult patients with skeletal Class III malocclusion were retrospectively divided into two groups (n = 20 each) according to the use of MARPE for the correction of transverse maxillomandibular discrepancy during presurgical orthodontic treatment. Serial lateral cephalograms and dental casts were analyzed until 6 months after surgery. Results: Before presurgical orthodontic treatment, there was no significant differences in terms of sex and age between groups. However, the difference of approximately 3.1 mm in the maxillomandibular intermolar width was statistically significant (p < 0.001). Two days after surgery, the mandible had moved backward and upward without any significant intergroup difference. Six months after surgery, the maxillary intercanine (2.7 ± 2.1 mm), interpremolar (3.6 ± 2.4 mm), and intermolar (2.0 ± 1.3 mm) arch widths were significantly increased (p < 0.001) relative to the values before presurgical orthodontic treatment in the MARPE group; these widths were maintained or decreased in the control group. However, there was no significant difference in surgical changes and the postsurgical stability between the two groups. No significant correlations existed between the amount of maxillary expansion and postsurgical mandibular movement. Conclusions: MARPE is useful for stable and nonsurgical expansion of the maxilla in adult patients with skeletal Class III malocclusion who are scheduled for bimaxillary surgery.