• Title/Summary/Keyword: Vertical stability

Search Result 897, Processing Time 0.024 seconds

Stability and parameters influence study of fully balanced hoist vertical ship lift

  • Cheng, Xionghao;Shi, Duanwei;Li, Hongxiang;Xia, Re;Zhang, Yang;Zhou, Ji
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.583-594
    • /
    • 2018
  • A theoretical formulation based on the linearized potential theory, the Descartes' rule and the extremum optimization method is presented to calculate the critical distance of lifting points of the fully balanced hoist vertical ship lift, and to study pitching stability of the ship lift. The overturning torque of the ship chamber is proposed based on the Housner theory. A seven-free-degree dynamic model of the ship lift based on the Lagrange equation of the second kind is then established, including the ship chamber, the wire rope, the gravity counterweights and the liquid in the ship chamber. Subsequently, an eigenvalue equation is obtained with the coefficient matrix of the dynamic equations, and a key coefficient is analyzed by innovative use of the minimum optimization method for a stability criterion. Also, an extensive influence of the structural parameters contains the gravity counterweight wire rope stiffness, synchronous shaft stiffness, lifting height and hoists radius on the critical distance of lifting points is numerically analyzed. With the Runge-Kutta method, the four primary dynamical responses of the ship lift are investigated to demonstrate the accuracy/reliability of the result from the theoretical formulation. It is revealed that the critical distance of lifting points decreases with increasing the synchronous shaft stiffness, while increases with rising the other three structural parameters. Moreover, the theoretical formulation is more applicable than the previous criterions to design the layout of the fully balanced hoist vertical ship lift for the ensuring of the stability.

Landing with Visual Control Reveals Limb Control for Intrinsic Stability

  • Lee, Aeri;Hyun, Seunghyun;Ryew, Checheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Repetition of landing with visual control in sports and training is common, yet it remains unknown how landing with visual control affects postural stability and lower limb kinetics. The purpose of this study was to test the hypothesis that landing with visual control will influence on lower limb control for intrinsic dynamic postural stability. Kinematics and kinetics variables were recorded automatically when all participants (n=10, mean age: 22.00±1.63 years, mean heights: 177.27±5.45 cm, mean mass: 73.36±2.80 kg) performed drop landings from 30 cm platform. Visual control showed higher medial-lateral force, peak vertical force, loading rate than visual information condition. This was resulted from more stiff leg and less time to peak vertical force in visual control condition. Leg stiffness may decrease due to increase of perturbation of vertical center of gravity, but landing strategy that decreases impulse force was shifted in visual control condition during drop landing. These mechanism explains why rate of injury increase.

COMPARATIVE STUDY ON THE POSITIONAL STABILITY OF REMOVABLE DIES USING SEVERAL DOWEL PIN SYSTEMS (수종의 dowel pin systems을 이용한 가철성 다이의 위치 안정성에 관한 비교 연구)

  • Jeong, Jae-Hyang;Jeong, Chang-Mo;Jeon, Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.738-747
    • /
    • 1998
  • The purpose of this study was to compare the positional stability of removable dies using several dowel pin systems. The removable dies were made by using five dowel pin systems: single dowel pin(Group I), single dowel pin and prepared groove on the die base(Group II), two-single dowel pin(Group III), two separate parallel dowel pins with plastic sleeves(Group IV), double straight dowel pins with metal sleeve(Group V). Special aluminum mold was made for specimens, and the dies of specimens removed and replaced thirty times with universal testing machine. Horizontal and vertical shift of dies was measured by Olympus monocular scanning tunneling microscope(STM5). The results were as follows: 1. The vertical shift was larger than the horizontal shift in all the other groups except Group I. 2. Single dowel pin system(Group I) was the most unstable of five dowel pin systems. 3. Double dowel pin systems with steeve(group IV, V) were the most stable of five dowel pin systems. 4. This study indicates that excellent horizontal positional stability is attainable with use of additional groove on the die base or double dowel pin. and excellent vertical positional stability is attainable with use of sleeve.

  • PDF

Vertical axis wind turbine types, efficiencies, and structural stability - A Review

  • Rehman, Shafiqur;Rafique, Muhammad M.;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • Much advancement has been made in wind power due to modern technological developments. The wind energy technology is the world's fastest-growing energy option. More power can be generated from wind energy by the use of new design and techniques of wind energy machines. The geographical areas with suitable wind speed are more favorable and preferred for wind power deployment over other sources of energy generation. Today's wind turbines are mainly the horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs). HAWTs are commercially available in various sizes starting from a few kilowatts to multi-megawatts and are suitable for almost all applications, including both onshore and offshore deployment. On the other hand, VAWTs finds their places in small and residential wind applications. The objective of the present work is to review the technological development, available sizes, efficiencies, structural types, and structural stability of VAWTs. Structural stability and efficiencies of the VAWTS are found to be dependent on the structural shape and size.

A Study on the Estimation of Slope Stability under the Influence of the Vertical Direction Seismic Coefficient Using Lower Bound Analysis (하계해석을 이용한 수직방향 지진계수 영향에 따른 비탈면의 안정성 평가 연구)

  • Choi, Sang-Ho;Kim, Jong-Min;Kim, Yong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.123-131
    • /
    • 2012
  • Recent earthquake records indicate that the vertical component of earthquake loading, generally neglected in seismic slope stability analysis, has a significant influence on the stability. This is particularly true for the earthquakes originating inside the continent, not from its boundaries. Therefore the design of geotechnical structures without consideration of vertical component of earthquake loading may result in unsafe design. In this study, with a consideration of the effect of vertical seismic loading, the horizontal yield seismic coefficients under various slope conditions are estimated, using the lower bound limit analysis. In addition, the equation for the determination of the critical direction (either upward or downward) of vertical seismic loading is proposed.

A Study on the Dynamic Stability of the Long Vertical Beam Subjected to the Parametric Excitation (파라메터 기진에 의한 긴수직보의 동적안정성에 관한 연구)

  • Y.C. Kim;J.S. Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.69-82
    • /
    • 1991
  • The dynamic stability of the long vertical beam subjected to the periodic axial load is investigated. As a solution method, the Galerkin's method is used to obtain a set of coupled Mathieu type equations. To obtain the stability chart, both the perturbation method and numerical method are used, and the results of the both methods are compared with each other. The stability regions for the various boundary conditions are obtained, Also the effects of the viscous damping, the mean tension and the multi-frequency parametric excitation are studied in detail.

  • PDF

EFFECTS OF SUPPORT STRUCTURE CHANGES ON FLOW-INDUCED VIBRATION CHARACTERISTICS OF STEAM GENERATOR TUBES

  • Ryu, Ki-Wahn;Park, Chi-Yong;Rhee, Hui-Nam
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.97-108
    • /
    • 2010
  • Fluid-elastic instability and turbulence-induced vibration of steam generator U-tubes of a nuclear power plant are studied numerically to investigate the effect of design changes of support structures in the upper region of the tubes. Two steam generator models, Model A and Model B, are considered in this study. The main design features of both models are identical except for the conditions of vertical and horizontal support bars. The location and number of vertical and horizontal support bars at the middle of the U-bend region in Model A differs from that of Model B. The stability ratio and the amplitude of turbulence-induced vibration are calculated by a computer program based on the ASME code. The mode shape with a large modal displacement at the upper region of the U-tube is the key parameter related to the fretting wear between the tube and its support structures, such as vertical, horizontal, and diagonal support bars. Therefore, the location and the number of vertical and horizontal support bars have a great influence on the fretting wear mechanism. The variation in the stability ratios for each vibrational mode is compared with respect to Model A and Model B. Even though both models satisfy the design criteria, Model A shows substantial improvements over Model B, particularly in terms of having greater amplitude margins in the turbulence-excited vibration (especially at the inner region of the tube bundle) and better stability ratios for the fluid-elastic instability.

Evaluation of the Effect of Traffic Control Program on the Ambient Air Quality in Seoul Metropolitan Area Using the Lower Level Stability Index of Atmosphere (하층대기의 연직 안정도 지표를 이용한 차량 2부제의 수도권 대기오염도 저감효과 분석)

  • Kim C.-H.;Park 1.-S.;Lee S.-J.;Kim J.-S.;Hong Y.-D.;Han J.-S.;Jin H.-A.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.243-257
    • /
    • 2005
  • The effects of Traffic Control Program (TCP) on the ambient urban air quality of SO$_{2}$, NO$_{2}$, O$_{3}$, and PM$_{10}$ were evaluated in Seoul metropolitan area by using the lower atmospheric vertical stability index and daily mean wind speeds. The vertical stability index; temperature lapse rate between 1000 hPa and 850 hPa geopotential height fields, were used to identify daily vertical stability index during the 2002 World Cup period where traffic amount was reportedly reduced to half the number of vehicles. The indicated air quality levels of TCP days were then compared with those of the cases observed with analogous vertical stability during the recent 3 years from 2000 to 2002. The result indicates that the effect of TCP on the primary air pollutants are found to be approximately 39$\%$, 23$\%$ and 20$\%$ lower for SO$_{2}$, NO$_{2}$ and PM$_{10}$, respectively. The secondary air pollutant; ozone, showed relatively smaller decreasing rate (13$\%$) of daily mean concentrations (even increased during the night time). The comparison of daily maximum or peak concentrations reveals that the pronounced decreasing effects of TCP on the ambient air quality for both primary and secondary air pollutants, suggesting that TCP is one of the effective strategies to control peak or higher concentrations for most urban scale air pollutants in and around the Seoul metropolitan area.

A FLUOROSCOPIC STUDY ON THE STABILITY OF SKIN REFERENCE POINTS DURING JAW OPENING AND CLOSING MOVEMENT (방사선 투시를 이용한 개폐구 운동에 따른 수직 고경 계측점의 안정성에 관한 연구)

  • Ahn, Hyung-Jun;Kim, Chang-Whe;Kim, Yung-Soo;Kim, Yong-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.516-530
    • /
    • 1999
  • The current clinical technique for occlusal vertical dimension recording is based on marking the skin reference points on the patient's face and measuring between these points using caliper-like device. And it is difficult to achieve reliable measurements by this technique because of movable soft tissue. The purpose of this study is to reveal the stability of skin reference points by comparing the relative movement between extra-oral skin reference points and intra-oral reference points using X-ray fluoroscope. 10 test subjects were divided into 2 groups : Group I (natural dentition) and Group II (denture-wearer whose vertical dimension was lost) and Group III consists of identical test subjects to Group II with their upper denture removed and record base inserted. Attaching the 3 mm diameter steel ball to nose tip, lower lip, chin and to existing denture (or record base), fluoroscopic examination and recording were taken during 2 jaw opening and closing movements. After subsequent digitization using personal computer, 1219 still pictures with 0.1 second interval were made. Using the 2 dimensional graphic software, measurements between reference points were executed. Dividing the entire jaw movement into 3 ranges (total, 1st half opening, 2nd half opening), rate of movement and relative movement between extra-oral and intra-oral reference points were calculated and statistically analyzed. The results of this study are as follows. 1 Within the same experimental group, no statistical difference was found in the stability of skin reference between lower lip point and chin point during total range of jaw opening and closing movement (p>.05) 2. In the first half range of jaw opening, statistical difference was found between Group I (natural dentition) and Group II (denture wearer) (p<.05) Group I has greater skin reference stability than Group II. 3. In the first half range of jaw opening, statistical difference was found between Group I and Group III (record base wearer) (p<.05). Group I has greater skin reference stability than Group III. 4. In the first half range of jaw opening, no statistical difference was found in the stability of skin reference between Group II and Group III (p>.05). 5. In the second half range of jaw opening, no statistical difference was found in the stability of skin reference between any experimental groups (p>.05). 6. In patients with their occlusal vertical dimension lost, employing other measuring references rather than skin is recommended because of low stability.

  • PDF

Learning control of a robot manipulator using neural networks (신경 회로망을 사용한 로보트 매니퓰레이터의 학습 제어)

  • 경계현;고명삼;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.30-35
    • /
    • 1990
  • Learning control of a robot manipulator is proposed using the backpropagation neural network. The learning controller is composed of both a linear feedback controller and a neural network-based feedforward controller. The stability analysis of the learning controller is presented. Three energy functions are selected in teaching the neural network controller : 1/2.SIGMA.vertical bar torque error vertical bar $^{2}$, 1/2.SIGMA..alpha. vertical bar position error vertical bar $^{2}$ + .betha. vertical bar velocity error vertical bar $^{2}$ + .gamma. vertical bar acceleration error vertical bar $^{2}$ and learning methods are presented. Simulation results show that the learning controller which is learned to minimize the third energy function performs better than the others in tracking problems. Some properties of the learning controller are discussed with simulation results.

  • PDF