• Title/Summary/Keyword: Vertical shortening

Search Result 62, Processing Time 0.022 seconds

Analytical correction of vertical shortening based on measured data in a RC high-rise building

  • Song, Eun-seok;Kim, Jae-yo
    • Advances in concrete construction
    • /
    • v.10 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • In this study, a process is proposed to calculate analytical correction values for the vertical shortening of all columns on all floors in a high-rise building that minimizes the error between the structural analysis predictions and values measured during construction. The weight ratio and the most probable value were accordingly considered based on the properties of the shortening value analyzed at several points in each construction stage and the distance between these measured points and unmeasured points at which the shortening was predicted. The effective range and shortening value normalization were considered using the column grouping concept. These tools were applied to calculate the error ratio between the predicted and measured values on a floor where a measured point exists, and then determine the estimated error ratio and estimated error value for the unmeasured point using this error ratio. At points on a floor where no measured point exists, the estimated error ratio and the estimated error value were calculated by applying the most probable value considering the weight ratio for the nearest floor where measured points exist. In this manner, the error values and estimated error values can be determined at all points in a structure. Then, the analytical correction value, defined as this error or estimated error value, was applied by adding it to the predicted value. Finally, the adequacy of the proposed correction method was verified against measurements by applying the analytical corrections to all unmeasured points based on the points where the measurement exists.

Prediction of Time-dependent Lateral Movement Induced by Differential Shortening in Tall Buildings Using Construction Stage Analysis

  • Ha, Taehun;Kim, Sangdae;Lee, Sungho
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • High-rise buildings move during construction due to time-dependent material properties of concrete (creep and shrinkage), construction sequences, and structural shapes. The building movements, including vertical and horizontal displacements, result from the sum of axial and lateral deformation of vertical members at each level. In addition to the vertical shortenings, the lateral movement induced by differential shortening can have adverse effects on the construction tolerance and serviceability of non-structural elements such as elevators and curtain walls. In this study a construction stage analysis method is developed to predict lateral movement induced by shortening, including the effect of creep and shrinkage. The algorithm of construction stage analysis is combined with the FE analysis program. It is then applied to predict lateral movement of a 58-story reinforced concrete building that was constructed in Kuala Lumpur, Malaysia. Gravity induced lateral movement of this building is predicted by the construction stage analysis. A field three-dimensional laser scanning survey is carried out to verify the prediction results, and satisfactory agreement is obtained.

The Effects of Differential Axial Shortening on RC High-rise Buildings with Outrigger or Mega Structure Systems (아웃리거구조시스템과 메가구조시스템 적용에 따른 철근콘크리트 초고층 건물에 대한 부등축소의 영향)

  • Kim, Gyeong-Chan;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • It is essential to control the lateral displacement and differential axial shortening of the vertical elements in high-rise buildings. Recently, an outrigger or a mega structure system has been adopted to control the lateral displacement. Furthermore, to resolve the problems caused by differential axial shortening in high-rise buildings, analytical prediction and correction is often studied; however, the study on the comparisons of the lateral load resisting systems to address differential axial shortening is less. Therefore, in this paper, a 60-story RC residential building using an outrigger or a mega structure system is analyzed with a construction sequence. Moreover, differential axial shortening can result in an additional member force of structural members and failure of non-structural members. These problems caused by differential axial shortening affects the behaviors and can damage the important structure member in the high-rise buildings. Hence, the effects of the systems on differential axial shortening between the vertical elements in high-rise buildings are studied.

The Utility of a Three-Dimensional Approach with T-Shaped Osteotomy in Osseous Genioplasty

  • Jegal, Jung Jae;Kang, Seok Joo;Kim, Jin Woo;Sun, Hook
    • Archives of Plastic Surgery
    • /
    • v.40 no.4
    • /
    • pp.433-439
    • /
    • 2013
  • Background Facial beauty depends on the form, proportion, and position of various units of the face. In terms of the frontal view and facial profile, the chin is the most prominent aesthetic element of the lower third of the face. Many methods have been implemented to obtain good proportions of the lower face. In this study, we applied the T-shaped genioplasty method to correcting chin deformities. Methods All of the procedures in 9 cases were performed under general anesthesia. For genioplasty, a horizontal cutting line and 1 or 2 vertical cutting lines were drawn 5 mm below the mental foramen. Osteotomed bone segments of the chin were used for horizontal widening using bone grafts or for horizontal shortening. Likewise, they were used as bone grafts for vertical lengthening or vertical shortening. The bone segments were approximated in the midline and held in place using miniplates. Results The postoperative appearance of the 9 cases showed that the lower third of the face had been naturally changed. At the same time, vertical lengthening or shortening, and horizontal widening or shortening could be implemented during the operation. Satisfactory results were obtained based on reviews of the patients' preoperative and postoperative photographs. The patients were also satisfied with the outcomes. Conclusions Using T-shaped genioplasty, we efficiently adjusted the shape and position of the chin to obtain good proportions of the lower face and change its contour to obtain an aesthetically appealing oval face in accordance with East Asians' aesthetic preferences.

Prediction, Field Measurement and Compensation of Column Shortening in Tall Building (초고층건물의 기둥축소량 예측, 계측 및 보정)

  • 조석희;김한수;김도균
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.143-146
    • /
    • 2003
  • Tall Buildings have been popular in recent years. Tall buildings require special consideration to design and construction due to their structural features. Column shortening is one of the important technologies to be considered in. The long-term deformations of concrete cause vertical shortening on cores and columns, trigger deformations on cladding, partitions and finishes, and damage their serviceability. This also affects structural stability by inducing unexpected stress to the structural members such as outrigger. The main objective of this paper is to re-evaluate column shortening according to revised field information and to compare the analysis results with the actual field measurement. Mok-Dong Hyperion, a 69-story apartment building which is currently under construction, was chosen for the case study.

  • PDF

Column Shortening Analysis and Field Measurement of Haeundae I'Park (초고층 건축물의 기둥축소량 해석 및 현장계측 - 해운대 아이파크)

  • Chung, Kwang-Ryang;Lee, Dae-Yong;Song, Ho-Beom;Park, Kwang-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.67-70
    • /
    • 2011
  • The effect of column shortening is a major consideration in design and construction of tall buildings, especially in concrete and composite structural systems. To avoid unexpected demage in structural and nonstructural elements, differential shortening between vertical members resulting from differing stress levels, loading histories, volume-to-surface ratios and other factors in a high-rise building must be properly considered in the design process. This paper represents analyzed and measured shortening results of RC cores and columns at the 72 story Haeundae I'Park. It shows that WACS program based on ACI and PCA material model is effective for the prediction of column shortening.

  • PDF

A Study on The Compensation Method of Vertical Members for High-rise building (초고층 건축물의 수직부재 보정 방법에 관한 연구)

  • Lee, Jea-Ok;Sho, Kwang-Ho;Yoo, In-Keun;Yang, Keek-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.33-36
    • /
    • 2003
  • Time-dependent axial shortening in the cores and columns of tall concrete buildings requires special attention to ensure proper behavior for strength of the structure and the nonstructural clement. The effects of column shortening, both elastic and inelastic, take on added significance and need special consideration in design and construction with increased height of structures. In this paper, the compensation method of column shortening are introduced. It could be conclued that the survey is a significant factor for the compensation of column shortening.

  • PDF

A Study on The Compensation Method of Vertical Members for High-rise building (초고층 건축물의 수직부재 보정 방법에 관한 연구)

  • 이재옥;소광호;유인근;양극영
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.33-36
    • /
    • 2003
  • Time-dependent axial shortening in the cores and columns of tall concrete buildings requires special attention to ensure proper behavior for strength of the structure and the nonstructural element. The effects of column shortening, both elastic and inelastic, take on added significance and need special consideration in design and construction with increased height of structures. In this paper, the compensation method of column shortening are introduced. It could be concluded that the survey is a significant factor for the compensation of column shortening.

  • PDF

Differential Column Shortening of Plaza zrakyat Office Tower Including Inelastic Effect (비산성효과를 고려한 Plaza Rakyat 오피스동의 기둥부등축소량)

  • 송화철;유은종;정석창;주영규;안재현;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.475-480
    • /
    • 1997
  • Highrise concrete buildings are very sensitive to cumulative and differential shortening of their vertical element such as wall and columns. Inelastic deformation due to creep and shrinkage consist of various factors and load history af actual building is very complicated. Therefore, for the accurate prediction and compensation of axial shortening, special efforts in design and construction phase are required to ensure long-term serviceability and strength requirement. In this paper, axial shortening estimation and compensation procedure is presented, which utilized experimentally determined concrete properties and preliminary load history and computerized approach, in case of Plaza Rakyat office tower, 79-story reinforced concrete building under construction in Malaysia.

  • PDF

Measured and Predicted Column Shortening of a Tall Reinforced Concrete Building (고층 콘크리트 건물의 기둥축소량 계측연구)

  • 김원상;조한욱;오정근;염경수
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.161-170
    • /
    • 1999
  • The KLCC Petronas Tower 2, one of the world tallest twin reinforced concrete towers constructed in Kuala Lumpur, Malysia, was instrumented during construction for the measurement of vertical time-dependent deformation of columns and corewall. Field measurements were made by means of vibrating wire strain gauges at the corewall, tower and bustle perimeter columns at selected floor levels of the building. Parallel to this observation, laboratory tests were performed on concrete cylinders made in the field in order to obtain the variations of concrete compressive strengths, elastic moduli, strains of creep and shrinkage with time. Monitored vertical deformations are in a good agreement with the prediction based on actual construction sequence and concrete properties from laboratory tests, as well as the analytical results reflected in actual column compensation of the building.