• Title/Summary/Keyword: Vertical ratio design

Search Result 340, Processing Time 0.028 seconds

Point Bracing System for a Steel Frame with Double Angle Connections Under Horizontal and Vertical Loads (수평·수직하중을 동시에 받는 더블앵글로 접합된 철골조의 절점 보강시스템)

  • Yang, Jae Guen;Kim, Ho Keun;Kim, Ki Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.629-639
    • /
    • 2004
  • A steel frame is one of the most commonly used structural systems due to its resistance to various types of applied loads. Many studies have been conducted to investigate the effects of several parameters, such as connection flexibility, the boundary condition of each support, and beam-to-column stiffness ratio, on the characteristic behavior of a frame. Based on the results of these studies, several design methods have been proposed. This research focused on the number of bolts on the rotational stiffness of a double-angle connection, and its effect on the story drift of a frame. To achieve these purposes, a simplified analytical model was proposed. Several experimental tests were also conducted to obtain the rotational connection stiffness of each double-angle connection.

High-precision modeling of uplift capacity of suction caissons using a hybrid computational method

  • Alavi, Amir Hossein;Gandomi, Amir Hossein;Mousavi, Mehdi;Mollahasani, Ali
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.253-280
    • /
    • 2010
  • A new prediction model is derived for the uplift capacity of suction caissons using a hybrid method coupling genetic programming (GP) and simulated annealing (SA), called GP/SA. The predictor variables included in the analysis are the aspect ratio of caisson, shear strength of clayey soil, load point of application, load inclination angle, soil permeability, and loading rate. The proposed model is developed based on well established and widely dispersed experimental results gathered from the literature. To verify the applicability of the proposed model, it is employed to estimate the uplift capacity of parts of the test results that are not included in the modeling process. Traditional GP and multiple regression analyses are performed to benchmark the derived model. The external validation of the GP/SA and GP models was further verified using several statistical criteria recommended by researchers. Contributions of the parameters affecting the uplift capacity are evaluated through a sensitivity analysis. A subsequent parametric analysis is carried out and the obtained trends are confirmed with some previous studies. Based on the results, the GP/SA-based solution is effectively capable of estimating the horizontal, vertical and inclined uplift capacity of suction caissons. Furthermore, the GP/SA model provides a better prediction performance than the GP, regression and different models found in the literature. The proposed simplified formulation can reliably be employed for the pre-design of suction caissons. It may be also used as a quick check on solutions developed by more time consuming and in-depth deterministic analyses.

Compact 1×2 and 2×2 Dual Polarized Series-Fed Antenna Array for X-Band Airborne Synthetic Aperture Radar Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.117-128
    • /
    • 2018
  • In this paper, compact linear dual polarized series-fed $1{\times}2$ linear and $2{\times}2$ planar arrays antennas for airborne SAR applications are proposed. The proposed antenna design consists of a square radiating patch that is placed on top of the substrate, a quarter wave transformer and $50-{\Omega}$ matched transformer. Matching between a radiating patch and the $50-{\Omega}$ microstrip line is accomplished through a direct coupled-feed technique with the help of an impedance inverter (${\lambda}/4$ impedance transformer) placed at both horizontal and vertical planes, in the case of the $2{\times}2$ planar array. The overall size for the prototype-1 and prototype-2 fabricated antennas are $1.9305{\times}0.9652{\times}0.05106{{\lambda}_0}^3$ and $1.9305{\times}1.9305{\times}0.05106{{\lambda}_0}^3$, respectively. The fabricated structure has been tested, and the experimental results are similar to the simulated ones. The CST MWS simulated and vector network analyzer measured reflection coefficient ($S_{11}$) results were compared, and they indicate that the proposed antenna prototype-1 yields the impedance bandwidth >140 MHz (9.56-9.72 GHz) defined by $S_{11}$<-10 dB with 1.43%, and $S_{21}$<-25 dB in the case of prototype-2 (9.58-9.74 GHz, $S_{11}$< -10 dB) >140 MHz for all the individual ports. The surface currents and the E- and H-field distributions were studied for a better understanding of the polarization mechanism. The measured results of the proposed dual polarized antenna were in accordance with the simulated analysis and showed good performance of the S-parameters and radiation patterns (co-pol and cross-pol), gain, efficiency, front-to-back ratio, half-power beam width) at the resonant frequency. With these features and its compact size, the proposed antenna will be suitable for X-band airborne synthetic aperture radar applications.

Surface and Internal Waves Scattering by Partial Barriers in a Two-Layer Fluid (이층유체에서 부분 장벽에 의한 표면파와 내부파의 분산)

  • Kumar, P.Suresh;Oh, Young-Min;Cho, Won-Chul
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.1
    • /
    • pp.25-33
    • /
    • 2008
  • Water waves are generated mainly by winds in open seas and large lakes. They carry a significant amount of energy from winds into near-shore region. Thereby they significantly contribute to the regional hydrodynamics and transport process, producing strong physical, geological and environmental impact on coastal environment and on human activities in the coastal area. Furthermore an accurate prediction of the hydrodynamic effects due to wave interaction with offshore structures is a necessary requirement in the design, protection and operation of such structures. In the present paper surface and internal waves scattering by thin surface-piercing and bottom-standing vertical barriers in a two-layer fluid is analyzed in two-dimensions within the context of linearized theory of water waves. The reflection coefficients for surface and internal waves are computed and analyzed in various cases. It is found that wave reflection is strongly dependent on the interface location and the fluid density ratio apart from the barrier geometry.

Spatial Variation Characteristics of Seismic Motions through Analysis of Earthquake Records at Fukushima Nuclear Power Plant (후쿠시마 원자력발전소 지진 계측 기록 분석을 통한 지진파의 공간적 변화 특성 평가)

  • Ha, Jeong-Gon;Kim, Mi Rae;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.223-232
    • /
    • 2021
  • The spatial variation characteristics of seismic motions at the nuclear power plant's site and structures were analyzed using earthquake records obtained at the Fukushima nuclear power plant during the Great East Japan Earthquake. The ground responses amplified as they approached the soil surface from the lower rock surface, and the amplification occurred intensively at about 50 m near the ground. Due to the soil layer's nonlinear characteristics caused by the strong seismic motion, the ground's natural frequency derived from the response spectrum ratio appeared to be smaller than that calculated from the shear wave velocity profile. The spatial variation of the peak ground acceleration at the ground surface of the power plant site showed a significant difference of about 0.6 g at the maximum. As a result of comparing the response spectrums at the basement of the structure with the design response spectrum, there was a large variability by each power plant unit. The difference was more significant in the Fukushima Daiichi site record, which showed larger peak ground acceleration at the surface. The earthquake motions input to the basement of the structure amplified according to the structure's height. The natural frequency obtained from the recorded results was lower than that indicated in the previous research. Also, the floor response spectrum change according to the location at the same height was investigated. The vertical response on the foundation surface showed a significant difference in spectral acceleration depending on the location. The amplified response in the structure showed a different variability depending on the type of structure and the target frequency.

Influence of loading method and stiffening on the behavior of short and long CFST columns

  • Shaker, Fattouh M.F.;Ghanem, Gouda M.;Deifalla, Ahmed F.;Hussein, Ibrahim S.;Fawzy, Mona M.
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.295-307
    • /
    • 2022
  • The objective of this research is to study experimentally the behavior of stiffened steel tubes (CFSTs). Considered parameters are stiffening methods by through-bolts or shear connectors with different configurations. In addition, the effect of global (ratio between length to diameter) and local (proportion between diameter to thickness) slenderness ratios are investigated. Load application either applied on steel only or both steel and concrete is studied as well. Case of loading on steel only happens when concrete inside the column shrinks. The purpose of the research is to improve the behavior of CFSTs by load transfer between them and different stiffening methods. A parametric experimental study that incorporates thirty-three specimens is carried out to highlight the impact of those parameters. Different outputs are recorded for every specimen such as load capacities, vertical deflections, longitudinal strains, and hoop strains. Two modes of failure occur, yielding and global buckling. Shear connectors and through-bolts improve the ultimate load by up to 5% for sections loaded at steel with different studied global slenderness and local slenderness equal 63.5. Meanwhile, shear connectors or through bolts increase the ultimate load by up to 6% for global slenderness up to 15.75 for sections loaded on composite with local slenderness equals 63.50. Recommendations for future design code development are outlined.

Evaluation Methods of Compression Index and the Coefficient of Consolidation by Back Analysis of Settlement Data (현장계측치로부터 역산한 압축지수와 압밀계수의 평가 방법)

  • Lee, Dal Won;Lim, Seong Hun;Kim, Ji Moon
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • A large scale field test of prefabricated vertical drains is performed to analyze the effect of parameters of the very soft clay at a test site. Compression index and the coefficient of horizontal consolidation obtained by back-analysis from the settlement data were compared with those obtained by means of laboratory tests. The Hyperbolic, Asaoka's and The Curve fitting methods are used to estimate final settlements and coefficients of consolidation. 1. Final settlement predicted with the Hyperbolic method was the largest, and the settlements predicted with the Asaoka's and the Curve fitting methods were nearly the same range, and it was concluded that smear effect has to be considered on design in the case that spacing of drains is small 2. The relationships of the measured consolidation ratio (Urn) and the designed consolidation ratio($U_t$) were showed as $U_m$ = (1.13~1.17)$U_t$, $U_m$ = (1.07~1.20)$U_t$, $U_m$ = (1.13~1.17)$U_t$ on the Hyperbolic, Asaoka's and the Curve fitting methods, respectively. The relations on the Asaoka's and the Curve fitting methods were nearly the same range. 3. The relationships of the field compression index($C_{cfield}$) and virgin compression index($V_{cclab}$) were showed as $C_{cfield}$ = (1.26~1.45)$V_{cclab}$, $C_{cfield}$ = (1.08~1.15) $V_{cclab}$, $C_{cfield}$ = (1.04~1.21)$V_{cclab}$, on the Hyperbolic, Asaoka's and the Curve fitting methods, respectively. 4. The ratio ($C_h/C_v$) of the coefficient of vertical consolidation and the coefficient of horizontal consolidation that is obtained by back-analysis from the settlement data was $C_h$=(0.7~0.9)$C_v$, $C_h$=(0.9~1.5)$C_v$, $C_h$=(2.4~3.0)$C_v$ on the Hyperbolic, Asaoka's and the Curve fitting methods, respectively. 5. It was concluded that the exact consolidation coefficient must be determined after the final settlement is predicted again when the consolidation is finished, because the field consolidation coefficient is decreased as the time allowed to be alone is increased.

  • PDF

Evaluation of Seismic Behavior for RC Moment Resisting Frame with Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 지진거동 평가)

  • Ko, Hyun;Kim, Hyun-Su;Park, Yong-Koo;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.13-22
    • /
    • 2010
  • Masonry infill walls are frequently used as interior partitions and exterior walls in low- or middle- rise RC buildings. In the design and assessment of buildings, the infill walls are usually treated as non-structural elements and they are ignored in analytical models because they are assumed to be beneficial to the structural responses. Therefore, their influences on the structural response are ignored. In the case of buildings constructed in the USA in highly seismic regions, infill walls have a lower strength and stiffness than the boundary frames or they are separated from the boundary frames. Thus, the previously mentioned assumptions may be reasonable. However, these systems are not usually employed in most other countries. Therefore, the differences in the seismic behaviors of RC buildings with/without masonry infill walls, which are ignored in structural design, need to be investigated. In this study, structural analyses were performed for a masonry infilled low-rise RC moment-resisting frame. The infill walls were modeled as equivalent diagonal struts. The seismic behaviors of the RC moment-resisting frame with/without masonry infill walls were evaluated. From the analytical results, masonry infill walls can increase the global strength and stiffness of a structure. Consequently, the interstory drift ratio will decrease but seismic forces applied to the structure will increase more than the design seismic load because the natural period of the structure decreases. Partial damage of the infill walls by the floor causes vertical irregularity of the strength and stiffness.

Reliable Evaluation of Dynamic Ground Properties from Cross-hole Seismic Test using Spying-loaded Lateral Impact Source (스프링식 횡방항 발진 크로스홀 탄성파 시험을 통한 지반 동적 특성의 합리적 산정)

  • Sun, Chang-Guk;Mok, Young-Jin;Chung, Choong-Ki;Kim, Myoung-Mo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.1-13
    • /
    • 2006
  • Soil and rock dynamic properties such as shear wave velocity $(V_s)$, compressional wave velocity $(V_p)$ and corresponding Poisson's ratio (v) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as $V_s,\;V_p$ and v with depth from the soil surface to the engineering and seismic bedrock were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.

A numerical study for initial elastic displacement at tunnel side-wall due to configuration of the tunnel excavation (굴착단면 형상에 따른 터널 초기탄성변위의 수치해석적 연구)

  • Kim, Sang-Hwan;Jung, Hyuk-Il;Lee, Min-Sang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.175-184
    • /
    • 2002
  • Ground reaction curve is very useful information for estimating the installation time of the tunnel support. The ground reaction curve can be estimated by analytical closed form solutions derived in case of circular section and isotropic stress condition. The nature of the ground reaction, however, depends significantly on tunnel configurations. Nevertheless, few purely analytical and experimental studies of this problem due to tunnel configurations appear to have been carried out. Therefore, it is necessary to investigate the influence of tunnel configurations in order to use simply in practical design. This paper describes a numerical study for the intial elastic displacement in the ground reaction curve due to configuration of tunnel excavation. In order to evaluate the applicability of analytical closed form solution in practical design, the parametric studies were carried out by numerical analysis in elastic tunnel behaviour. In the studies, S value, namely configuration factor, defined as the ratio between tunnel height (b) and width (a), varies between 0.5 and 3.0, initial ground vertical stress varies between 5~30 MPa for each S values. The results indicated that the self-supportability of ground is larger in the ground having low S value. It, however, is suggested that the applicability of closed form solution may not be adequate to determine directly the installation time of the support and self-supportability of ground. It should be necessary to perform the additional numerical analysis.

  • PDF