• Title/Summary/Keyword: Vertical pump

Search Result 195, Processing Time 0.023 seconds

Analysis of Current/Vibration Characteristics for Vertical Pump Induction Motors in Power Plant (발전소 입형펌프 전동기의 전류/진동신호 특성 분석)

  • Kim, Yeon-Whan;Lee, Doo-Young;Gu, Jea-Rayng;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.400-405
    • /
    • 2005
  • The diagnosis of mechanical load and of power transmission system failures is usually carried out through mechanical signals such as vibration signals, acoustic emissions, motor speed envelope. If the mechanical load comes from an electrical machine the mechanical failures could be detected previously. Mechanical rotor imbalances and rotor eccentricities are reflected in electric, electromagnetic and mechanical quantities. Therefore, many surveillance schemes apply to the Fourier spectrum of a line current in order to monitor the motor condition. Due to the interaction of the currents and voltages, both these current harmonics are also reflected by a single harmonic component in the frequency spectrum of the electric power. Motor Current Signature Analysis is the usuful technique to assess machine electrical condition.

  • PDF

Estimation of the hydraulic conductivity profile in fractured rocks using the borehole flowmeter test (시추공 유속 검층을 이용한 암반 대수층의 수리전도도 분포 산정)

  • 구민호;차장환
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.257-271
    • /
    • 2002
  • The vertical distribution of hydraulic conductivity of 3 boreholes located at Kongju National University was estimated by the ambient flow and the pump-induced flow measurements using a heat-pulse flowmeter. The ambient flow measurements showed that a great amount of groundwater (1~2 m$^3$/day) flowed in the boreholes through the conductive fractures. The analyzed conductivity profiles we similar to those of the packer test performed for the same boreholes. The conductive fractures in which the differential net flow changed greatly could be identified by the BIPS logging. The water-quality logging data showed that quality of groundwater changed abruptly at some depths of the boreholes. This change in water quality can be attributed to the presence of conductive fractures that have resulted in the mixing of groundwater of different quality flowing in different fracture channels. However, compared to the flowmeter test, the water-quality logging showed low capability in identifying locations of conductive fractures.

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

A Study on the Effects of Design Parameters of Vertical Ground Heat Exchanger on the Borehole Thermal Resistance (수직밀패형 지중열교환기의 설계인자가 보어홀 전열저항에 미치는 영향에 관한 연구)

  • Chang, Keun Sun;Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.128-135
    • /
    • 2018
  • Currently, vertical closed ground heat exchangers are the most widely utilized geothermal heat pump systems and the major influencing parameters on the performance of ground heat exchangers are the ground thermal conductivity(k) and borehole thermal resistance($R_b$). In this study, the borehole thermal resistance was calculated from the in-situ thermal response test data and the individual effects of design parameters (flow rate, number of pipe, grout composition) on the borehole thermal resistance were analyzed. The grout thermal resistance was also compared with the correlations in the literatures. The borehole thermal resistance of the investigated ground heat exchanger results in 0.1303 W/m.K and the grout thermal resistance (66.6% of borehole thermal resistance) is the most influencing parameter on borehole heat transfer compared to the other design parameters (pipe thermal resistance, 31.5% and convective thermal resistance, 1.9%). In addition, increasing the thermal conductivity of grout by adding silica sand to Bentonite is more effective than the other design improvements, such as an increase in circulating flowrate or number of tubes on enhancing borehole heat transfer.

Cooling Performance of Horizontal Type Geothermal Heat Pump System for Protected Horticulture (시설원예를 위한 수평형 지열 히트펌프의 냉방성능 해석)

  • Ryou, Young-Sun;Kang, Youn-Ku;Kang, Geum-Chun;Kim, Young-Joong;Paek, Yee
    • Journal of Bio-Environment Control
    • /
    • v.17 no.2
    • /
    • pp.90-95
    • /
    • 2008
  • It has become a big matter of concerns that the skill and measures against reduction of energy and cost for heating a protected horticultural greenhouse were prepared. But in these days necessity of cooling a protected horticultural greenhouse is on the rise from partial high value added farm products. In this study, therefore, a horizontal type geothermal heat pump system with 10 RT scale to heat and cool a protected horticultural greenhouse and be considered to be cheaper than a vertical type geothermal heat pump system was installed in greenhouse with area of $240\;m^2$. And cooling performances of this system were analysed. As condenser outlet temperature of heat transfer medium fluid rose from $40^{\circ}C$ to $58^{\circ}C$, power consumption of the heat pump was an upturn from 11.5 kW to 15 kW and high pressure rose from 1,617 kPa to 2,450 kPa. Cooling COP had the trend that the higher the ground temperature at 1.75 m went, the lower the COP went. The COP was 2.7 at ground temperature at 1.75 m depth of $25.5^{\circ}C$ and 2.0 at the temperature of $33.5^{\circ}C$ and the heat extraction rate from the greenhouse were 28.8 kW, 26.5 kW respectively at the same ground temperature range. 8 hours after the heat pump was operated, the temperature of ground at 60 cm and 150 cm depth buried a geothermal heat exchanger rose $14.3^{\circ}C$, $15.3^{\circ}C$ respectively, but the temperature of ground at the same depth not buried rose $2.4^{\circ}C$, $4.3^{\circ}C$ respectively. The temperature of heat transfer medium fluid fell $7.5^{\circ}C$ after the fluid passed through geothermal heat exchanger and the fluid rejected average 46 kW to the 1.5 m depth ground. It analyzed the geothermal heat exchanger rejected average 36.8 W/m of the geothermal heat exchanger. Fan coil units in the greenhouse extracted average 28.2 kW from the greenhouse air and the temperature of heat transfer medium fluid rose $4.2^{\circ}C$after the fluid passing through fan coil units. It was analyzed the accumulation energy of thermal storage thank was 321 MJ in 3 hours and the rejection energy of the tank was 313 MJ in 4 hours.

Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector (수직 오리피스 이젝터의 혼합유동 및 산소전달 특성)

  • Kim, Dong Jun;Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

Hydraulic and Numerical Model Experiments of Flows in Circulation-Water-Pump Chambers (순환수취수펌프장 내의 흐름에 대한 수리 및 수치모형실험)

  • Yi, Yong-Kon;Cheong, Sang-Hwa;Kim, Chang-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.8 s.157
    • /
    • pp.631-643
    • /
    • 2005
  • The objective of this study is to perform hydraulic and numerical model experiments of the flows in circulation-water-pump(CWP) chambers of combined cycle power plants (CCPP) to be built and to suggest improvement plans if the flows might cause a serious problem on the operation of CWPs. Hydraulic model was constructed in a scale of 1 to 20 using acrylic sheets and a two dimensional numerical model used was RMA2. To evaluate results of Hydraulic and numerical model experiments, evaluation criteria of flow conditions in the intake canal and CWP chambers were determined. Vertical vorticities obtained from numerical simulations for the initial plan of CCPPs were qualitatively compared with results of hydraulic model experiments and the formation possibility of a large scale vortex, one of the flow evaluation criteria, was evaluated. The initial plan was found not to satisfy the flow evaluation. Nine improvement plans were devised and numerically simulated. Four alternative plans among nine improvement plans were selected and hydraulically experimented. On the ground of the results of hydraulic model experiments, a final improvement plan, one of four improvement plants, was suggested. When CWP chambers and intake canals were designed with spatial constraints, flow separating wall and guide walls were found to improve flow conditions in CWP chambers.

Estimation of the Spring and Summer Net Community Production in the Ulleung Basin using Machine Learning Methods (기계학습법을 이용한 동해 울릉분지의 봄과 여름 순군집생산 추정)

  • DOSHIK HAHM;INHEE LEE;MINKI CHOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • The southwestern part of the East Sea is known to have a high primary productivity compared to those in the northern and eastern parts, which is attributed to nutrients supplies either by Tsushima Warm Current or by coastal upwelling. However, research on the biological pump in this area is limited. We developed machine learning models to estimate net community production (NCP), a measure of biological pump, with high spatial and time scales of 4 km and 8 days, respectively. The models were fed with the input parameters of sea surface temperature, chlorophyll-a, mixed layer depths, and photosynthetically active radiation and trained with observed NCP derived from high resolution measurements of surface O2/Ar. The root mean square error between the predicted values by the best performing machine model and the observed NCP was 6 mmol O2 m-2 d-1, corresponding to 15% of the average of observed NCP. The NCP in the central part of the Ulleung Basin was highest in March at 49 mmol O2 m-2 d-1 and lowest in June and July at 18 mmol O2 m-2 d-1. These seasonal variations were similar to the vertical nitrate flux based on the 3He gas exchange rate and to the particulate organic carbon flux estimated by the 234Th disequilibrium method. To expand this method, which produces NCP estimate for spring and summer, to autumn and winter, it is necessary to devise a way to correct bias in NCP by the entrainment of subsurface waters during the seasons.

Thermal conductivity and viscosity of graphite-added bentonite grout for backfilling ground heat exchanger (지중 열교환기용 뒤채움재로서 흑연을 첨가한 벤토나이트 그라우트재의 열전도도 및 점도 특성)

  • Lee, Chul-Ho;Lee, Kang-Ja;Choi, Hang-Seok;Choi, Hyo-Pum
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 2009
  • Bentonite-based grouting has been usually used for sealing a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. The bentonite-based grout, however, has relatively lower thermal conductivity than that of ground formation. Accordingly, it is common to add some additives such as silica sand into the bentonite-based grout for enhancing heat transfer. In this study, graphite is adapted to substitute silica sand as an addictive because graphite has very high thermal conductivity. The effect of graphite on the thermal conductivity of bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, the viscosity of graphite-added bentonite grout was measured to evaluate the field pumpability of the grout.

  • PDF

An Experimental Study on the Thermal Performance Measurement of Vertical Borehole Heat Exchanger(BHE) (수직형 지열 열교환기(BHE)의 열성능 측정에 관한 실험적 연구)

  • Lim Kyoung-Bin;Lee Sang-Hoon;Soung Nak-Won;Lee Chang-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.8 s.251
    • /
    • pp.764-771
    • /
    • 2006
  • Knowledge of ground thermal properties is most important for the proper design of large BHE(borehole heat exchanger) systems. Thermal response tests with mobile measurement devices were first introduced in Sweden and USA in 1995. Thermal response tests have so far been used primarily for in insitu determination of design data for BHE systems, but also for evaluation of grout material, heat exchanger types and ground water effects. The main purpose has been to determine insitu values of effective ground thermal conductivity, including the effect of ground-water flow and natural convection in the boreholes. Test rig is set up on a small trailer, and contains a circulation pump, a heater, temperature sensors and a data logger for recording the temperature data. A constant heat power is injected into the borehole through the pipe system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance.