• Title/Summary/Keyword: Vertical pressure

Search Result 1,339, Processing Time 0.038 seconds

A Study on the Determination of Construction Depth of Vertical Drain by Cone Resistance (콘 관입저항치를 이용한 수직배수재 타설심도 결정에 관한 연구)

  • Kim, Yeon-Jung;Kim, Nam-Ho;Shin Yun-Sup
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.261-269
    • /
    • 2006
  • Recently, piezocone penetration test is frequently used in order to estimate the characteristics of soft ground with standard penetration test; generally used in the past In this study, standard penetration test, piezocone penetration test, driving resistance of vertical drain were used in order to increase the confidence for determination of soft ground depth. And the compressible layer was determined by the comparison between the preconsolidation pressure and the designed increase pressure. As the results, the relation between standard penetration test and piezocone penetration test shows $q_c$=(1.09~1.63)N at the soft ground, determined by 5/30 N value. And $q_c$(1.21~1.98)N was shown at the point of compressible layer, evaluated by the preconsolidation pressure. And driving resistance of vertical drain is 70 f/$cm^2$ which is equal to 10kgf/$cm^2$ cone penetration resistance.

  • PDF

Two-Phase Flow Distribution, Phase Separation and Pressure Drop in Multi-Microchannel Tubes (마이크로채널관 내 2상 유량분배, 상분리 및 압력강하)

  • Cho, Hong-Ki;Cho, Geum-Nam;Yoon, Baek;Kim, Young-Saeng;Kim, Jung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.828-837
    • /
    • 2004
  • The present study investigated two-phase flow distribution, phase separation and pressure drop in multi-microchannel tubes under adiabatic condition. The test section consisted of inlet and outlet headers with the inner diameter of 19.4㎜ and 15 parallel microchannel tubes. Each microchannel tube brazed to the inlet and outlet headers and had 8 rectangular ports with the hydraulic diameter of 1.32㎜. The key experimental parameters were orientation of header (horizontal and vertical), flow direction of refrigerant into the inlet header (in-line, parallel and cross flow) and inlet quality (0.1, 0.2 and 0.3). It was found that the orientation of the header had relatively large effect on the flow distribution and phase separation, while the inlet quality didn't affect much on them. The horizontal header showed the better flow distribution and phase separation characteristics than the vertical one. The parallel flow condition with the horizontal header showed the best performance for the flow distribution and phase separation characteristics under the test conditions. Two-phase pressure drops through the microchannel tubes with the horizontal header were higher than those of the microchennel tubes with the vertical header due to gravitational effect.

Analysis for Realization of Vertical Wall in Holes by Applying Alternate High Pressure in the Punchless Piercing Process (무 펀치 피어싱 공정에서 교번식 고압 적용을 통한 구멍 내 직벽 구현 해석)

  • Lee, Sang-Wook;Um, Tai-Joon;Joo, Young-Cheol;Kim, Kug-Weon;Kwon, Kye-Si
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.929-934
    • /
    • 2009
  • In this work, the punchless piercing process with application of alternate high pressure has been proposed as a method to obtain pierced holes having nearly vertical wall over thin metal plates. The numerical simulation considering Lemaitre damage model has been accomplished for the proposed method. The simulated results have been compared with those by conventional one-way punch less piercing process. It has been revealed that the fractured section made by pressure alternation method shows nearly steep wall where the deviation angle from the vertical line is as small as $3.6^{\circ}$.

Earth Pressure on the Underground Box Structure (지중 박스구조물에 작용하는 토압)

  • 이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.243-250
    • /
    • 2000
  • The mechanical behavior of the underground box culvert constructed by the open cut method depends mainly on the earth pressure acting on it. In this study, the earth pressure on the underground box culverts constructed by the open cut method during and after the construction sequence was numerically analysed by using FLAC. The results are compared with those of the Marston-Spangler's theory, silo theory, and the model tests. The results showed that the vertical earth pressure on the upper slab of the box structure was not uniform. It was as large as the overburden in the middle part of the slab but was smaller or larger than that at its end part depending on the slope of the excavation, the depth of the cover, and the width of the side refill. The horizontal earth pressure on the side wail was much smaller than the earth pressure at rest and grew nonlinearly with the depth.

  • PDF

Effect of Tunnel Entrance Shape of High Speed Train on Aerodynamic Characteristics and Entry Compression Wave (고속전철의 터널입구 형상이 공력특성 및 터널입구 압축파에 미치는 영향)

  • Jeong, Soo-Jin;Kim, Woo-Seung;Zhu, Ming
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.111-118
    • /
    • 2004
  • The work presented in this paper concerns the aerodynamic characteristics and compression wave generated in a tunnel when a high speed train enters it. A large number of solutions have been proposed to reduce the amplitude of the pressure gradient in tunnels and some of the most efficient solutions consist of (a) addition ofa blind hood, (b) addition of inclined part at the entrance, and (c) holes in the ceiling of the tunnel. These are numerically studied by using the three-dimensional unsteady compressible Euler equation solver with ALE, CFD code, based on FEM method. Computational results showed that the smaller inclined angle leads to the lower pressure gradient of compression wave front. This study indicated that the most efficient slant angle is in the range from $30^{\circ}$ to $50^{\circ}$. The maximum pressure gradient is reduced by $26.81\%$ for the inclined angle of $30^{\circ}$ as compared to vertical entry. Results also showed that maximum pressure gradient can be reduced by $15.94\%$ in blind hood entry as compared to $30^{\circ}$ inclined tunnel entry. Furthermore, the present analysis showed that inclined slant angle has little effect on aerodynamic drag. Comparison of the pressure gradient between the inclined tunnel hood and the vertical entry with air vent holes indicated that the optimum inclined tunnel hood is much more effective way in reducing pressure gradient and increasing the pressure rise time.

A Study on Heat Transfer Performance of Vertical Ground Heat Exchanger of GSHP(Ground Source Heat Pump) (GSHP용 수직형 지중열교환기의 열전달 성능에 관한 연구)

  • Chung, Min-Ho;Chang, Ki-Chang;Ra, Ho-Sang;Baik, Young-Jin;Park, Seong-Ryong;Yoo, Seong-Yeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2102-2107
    • /
    • 2007
  • GSHP systems are used for air-conditioning systems in commercial buildings, schools, and factories because of low operating and maintenance costs. These systems use the earth as a heat source in heating and a heat sink in cooling mode. Ground heat exchangers are classified by a horizontal and vertical type according to the installation method. Vertical type is usually constructed by placing small diameter high density polyethylene tube in a vertical borehole. Vertical tube sizes range from 20 to 40 mm nominal diameter. Borehole depth range between 100 and 200 m depending on local drilling conditions and available equipment. In this study, to evaluate the performance of single u-tube with bentonite grouting, single u-tube with broken stone grouting and double u-tube bentonite grouting of vertical ground heat exchangers, test sections are buried on the earth and experimental apparatus is installed. Therefore the heat transfer performance and pressure loss of these are estimated.

  • PDF

A Study on Performance of Vertical Ground Heat Exchanger for Heat Pump (히트펌프용 수직형 지중열교환기의 성능에 관한 연구)

  • Chang, Ki-Chang;Chung, Min-Ho;Yoon, Hyung-Kee;Ra, Ho-Sang;Yoo, Seong-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.466-469
    • /
    • 2007
  • Heat pumps are used for air-conditioning systems in commercial buildings, schools, and factories because of low operating and maintenance costs. These systems use the earth as a heat source in heating mode and a heat sink in cooling mode. Ground heat exchangers are classified by a horizontal type and vertical type according to the installation method. A horizontal type means that a heat exchanger is laid in the trench bored in 1.2 to 1.8 m depth. And a vertical type is usually constructed by placing small diameter high density polyethylene tube in a vertical borehole. Vertical tube sizes range from 20 to 40 mm nominal diameter. Borehole depth range between 100 and 200 m depending on local drilling conditions and available equipment. In this study, to evaluate the performance of single u-tube with bentonite grouting, single u-tube with broken stone grouting and double n-tube bentonite grouting of vertical ground heat exchangers, test sections are buried on the earth and experimental apparatus is installed. Therefore the heat transfer performance and pressure loss of these are estimated.

  • PDF

A Study of Artesian Characteristics in Yangsan/Mulgeum Site (양산물금지구 피압수 특성에 관한 연구)

  • 한영철;유갑용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.123-130
    • /
    • 1999
  • This paper presents a study of geotechnical treatment for artesian pressure after extensive investigation was performed on the distribution and characteristics of artesian condition which exists at Yangsan/Mulgeurn site. The result of analysis indicates that the artesian pressure seems to be up to 2.9M above the existing ground surface, originating from the higher ground water recharging sources in the surrounding hills and mountains. There is no harmful effect after the site development since the height of embankment is more than 4M above the existing ground surface.

  • PDF

Development of Automatic PBD Construction Quality Measurement System for Soft Ground Improvement (연약지반 개량을 위한 PBD 시공품질 자동측정시스템 개발)

  • Kim, Min-Ho;Mun, Sang-Don;Kim, Hang-Young;Kim, Tae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.605-610
    • /
    • 2011
  • Soft ground improvement is essential to enhance strength of ground for construction in reclaimed land or shore. There are many method of soft ground improvement, and vertical drain method was widely used in many countries including korea. As vertical drain method is to plant many Prefabricated Vertical Drains in soft ground, it promotes consolidation and enhances strength. The PBD(Plastci Board Drain) that is excellent economy and workability was widely used in many countries as Prefabricated Vertical Drains. Construction quality of PBD is affected installation depth, pressure, perpendicularity. This paper describes the system developed that can automatically measure installation depth, pressure and perpendicularity for PBD. This system can reduce fraction defective of construction by auto faulty alarm and keeps the safety of operator by auto control system.

A Study on Earth Pressure in Unsymmetrical Narrow Backfill Space (비대칭 좁은 공간에서의 되메움 토압에 관한 연구)

  • 문창열
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.261-277
    • /
    • 1999
  • The horizontal and vertical earth pressures in backfill space which is narrowly excavated like ditch are affected by the share of ditch backfill space and the wall friction between excavated surface and backfill soil. In this paper, for the excavated surface the Handy's equation of a symmetric vertical case and the Kellogg's equation of a symmetric sloped one are modified to show the minor principal stress arch for the unsymmetrical excavated backfill space. Compared with the soil test box result, a similarity in magnitude and distribution of backfill earth pressure shows that the earth pressure has been observed. The backfill earth pressure in unsymmetrically sloped space has been shown twice as much as the one in vertically excavated space and also remarkable decline of arching for the former case. It is verified that the earth pressure equation should account the shape and size of backfill space to calculate the earth pressure for similar structure to the one handled in this study.

  • PDF