• Title/Summary/Keyword: Vertical motion control

Search Result 204, Processing Time 0.034 seconds

Maneuver Analysis of Full-vehicle Featuring Electrorheological Suspension and Electrorheological Brake (ER 현가장치 및 ER 브레이크를 적용한 전체차량의 거동분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.464-471
    • /
    • 2007
  • This paper presents a maneuver analysis of a full-vehicle featuring electrorheological(ER) suspension and ER brake. In order to achieve this goal, an ER damper and an ER valve pressure modulator are devised to construct ER suspension and ER brake systems, respectively. After formulating the governing equations of the ER damper and ER valve pressure modulator, they are designed and manufactured for a middle-sized passenger vehicle, and their field-dependent characteristics are experimentally evaluated. The governing equation of motion for the full-vehicle is then established and integrated with the governing equations of the ER suspension and ER brake. Subsequently, a sky-hook controller for the ER suspension and a sliding mode controller for the ER brake are formulated and implemented. Control performances such as vertical displacement and braking distance of vehicle are evaluated under various driving conditions through computer simulations.

Parameter Estimation of a Small-Scale Unmanned Helicopter by Automated Flight Test Method (자동화 비행시험기법에 의한 소형 무인헬리콥터의 파라메터 추정)

  • Bang, Keuk-Hee;Kim, Nak-Wan;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.916-924
    • /
    • 2008
  • In this paper dynamic modeling parameters were estimated using a frequency domain estimation method. A systematic flight test method was employed using preprogrammed multistep excitation of the swashplate control input. In addition when one axis is excited, the autopilot is engaged in the other axis, thereby obtaining high-quality flight data. A dynamic model was derived for a small scale unmanned helicopter (CNUHELI-020, developed by Chungnam National University) equipped with a Bell-Hiller stabilizer bar. Six degree of freedom equations of motion were derived using the total forces and moments acting on the small scale helicopter. The dynamics of the main rotor is simplified by the first order tip-path plane, and the aerodynamic effects of fuselage, tail rotor, engine, and horizontal/vertical stabilizer were considered. Trim analysis and linearized model were used as a basic model for the parameter estimation. Doublet and multistep inputs are used to excite dynamic motions of the helicopter. The system and input matrices were estimated in the frequency domain using the equation error method in order to match the data of flight test with those of the dynamic modeling. The dynamic modeling and the flight test show similar time responses, which validates the consequence of analytic modeling and the procedures of parameter estimation.

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.

Visual Measurement of Pile Movement for the Foundation Work using a High-Speed Line-Scan

  • Lim, Mee-Seub;Lim, Joon-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1802-1807
    • /
    • 2004
  • When a construction company builds a high structure, many piles should be driven into the ground by a hammer whose weight is 7,000 Kg in order to make the ground under the structure safe and strong. So, it is essential to determine whether a pile is penetrated into the ground enough to support the weight of the structure since ground characteristics at different locations are different each other. This paper proposes a visual measurement system for pile rebound and penetration movement including vibration using a high-speed line-scan camera and a specially designed mark to recognize two-dimensional motion parameters of the mark using only a line-scan camera. A mark stacking white and black right-angled triangles is used for the measurement, and movement information for vertical distance, horizontal distance and rotational angle is determined simultaneously

  • PDF

Development of the Hovering AUV test-bed and field test

  • Choi, Hyeung-Sik;Cho, Sohyung;Kim, Joon-Young
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.40-47
    • /
    • 2016
  • This paper describes the design and performance of a hovering AUV constructed at KMOU (Korea Maritime and Ocean University). Before the field test, we analyzed the dynamic performance of the AUV using a simulation program made by Matlab & Simulink. Also, a PID controller was designed to control the thrusters. Using 4 thrusters (2 vertical and 2 horizontal), the AUV could be controlled using dynamic motion with 4-DOF. A simulation and field test were conducted with way-point tracking, maintaining the desired depth. To perform way-point tracking, the AUV can be fine-tuned to the desired heading angle through the LOS (Line Of Sight) method. This paper shows the results of simulation and field tests.

Kinematic analysis of a 6-degree-of-freedom micro-positioning parallel manipulator (6자유도를 갖는 정밀 위치제어용 병렬 매니퓰레이터의 기구학 해석)

  • 박주연;심재홍;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.213-216
    • /
    • 1996
  • This paper studies a class of in-parallel manipulators with special geometry where the forward displacement analysis problem can be solved easier than the fully parallel manipulators. Three horizontal links of this mechanism provide 3DOFs(Degrees of Freedom), which are one degree of orientational freedom and two degrees of translatory freedom. Three vertical links of this mechanism provide 3DOFs, which are two degrees of orientational freedom and one degree of translatory freedom. The main advantages of this manipulator, compared with the Stewart platform type, are the capability to produce pure rotation and to predict the motion of the moving platform easily. Since this manipulator has simple kinematic characteristics compared with the Stewart platform, controlling in real-time is possible due to less computational burden. The purpose of this investigation is to develope an analytical method and systematic method to analyze the basic kinematics of the manipulator. The basic kinematic equations of the manipulator are derived and simulation is carried out to show the performance of the mechanism.

  • PDF

Dynamic Response of An Airship at Cruising

  • Yoshimasa, Ochi;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.2-148
    • /
    • 2001
  • The most important difference of an airship from conventional vehicle is that it has the apparent mass and inertia provided from the existence of Helium gas inside the airship. To acquire To acquire the exact response of the airship, the longitudinal responses of airship with respect to the vertical gust, which is the non-linear system, have been studied. An Airship has neutral buoyancy in equilibrium state. When it moves, its motion shows much difference comparing with conventional aircraft. Here, we compare two cases, the one has the apparent mass and the other hasn´t. With the apparent mass, the magnitude of the former response is smaller than the latter, while the frequency is higher. However, the apparent mass delay ...

  • PDF

Numerical Investigation of Contamination Particle's Trajectory in a Head/slider Disk Interface (헤드/디스크 인터페이스 내에서 오염 입자의 거동에 관한 수치적 연구)

  • Park, Hee-Sung;Hwang, Jung-Ho;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.477-484
    • /
    • 2000
  • Microcontamination caused by particle deposition on the head disk interface threatens the reliability of hard disk drive. Design of slider rail to control contamination becomes an important issue in magnetic recording. In this paper, how particles adhere to the slider and the disk is examined. To investigate accumulation mechanism of the particles, trajectory of the particles in a slider/disk interface is simulated with considering various forces including drag force, gravitational force, Saffman lift force, and electrostatic force. It is found that the charged particles can easily adhere to the slider or disk surface, if an electric field exists between the slider and the disk. It is supposed that the vertical motion of the particles should be related with not only Saffman force but also electrostatic force.

Optimal damping ratio of TLCDs

  • Chen, Yung-Hsiang;Chao, Chen-Chi
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.227-240
    • /
    • 2000
  • The study of the optimal damping ratio of a tuned liquid-column damper (or TLCD) attached to a single-degree-of-freedom system is presented. The tuned liquid-column damper is composed of two vertical columns connected by a horizontal section in the bottom and partially filled with water. The ratio of the length of the horizontal section to the effective wetted length of a TLCD considered as another important parameter is also presented for investigation. A simple pendulum-like model test is conducted to simulate a long-period motion in order to prove the effectiveness of TLCD for vibrational control. Comparisons of the experimental and analytic results of the TLCD, TLD (tuned-liquid damper), and TMD (tuned-mass damper) are included for discussion.

Case Study on Absolute Gravity Measurement using FG-5 (FG-5 절대중력계 사례조사 연구)

  • Lee, Young-Jin;Son, Soo-Ik;Lee, Myeong-Jun;Jung, Kwang-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.197-199
    • /
    • 2010
  • A gravity survey is a base of research earth gravity field determined, perception of the vertical motion, change of Geoid, sea-level changes, climate change etc. Recently, FG-5 was adopted in NGII. NGII has completed 4 points of absolute gravity survey and 1,400 points of relative gravity survey in 2009 to aim to observe 20 points of absolute gravity survey and 6,000 points of gravity control point by 2013. Using results of gravity survey, NGII will provide citizen with data for research about renewal of geoid model and geophysics. This study aims to go over examples of utilization of absolute gravimeter & method of utilization in korea.

  • PDF