• Title/Summary/Keyword: Vertical load carrying capacity

검색결과 54건 처리시간 0.021초

Influence of connection detailing on the performance of wall-to-wall vertical connections under cyclic loading

  • Hemamalini, S.;Vidjeapriya, R.
    • Advances in concrete construction
    • /
    • 제9권5호
    • /
    • pp.437-448
    • /
    • 2020
  • In high rise buildings that utilize precast large panel system for construction, the shear wall provides strength and stiffness during earthquakes. The performance of a wall panel system depends mainly on the type of connection used to transfer the forces from one wall element to another wall element. This paper presents an experimental investigation on different types of construction detailing of the precast wall to wall vertical connections under reverse cyclic loading. One of the commonly used connections in India to connect wall to wall panel is the loop bar connection. Hence for this study, three types of wet connections and one type of dry connection namely: Staggered loop bar connection, Equally spaced loop bar connection, U-Hook connection, and Channel connection respectively were used to connect the precast walls. One third scale model of the wall was used for this study. The main objective of the experimental work is to evaluate the performance of the wall to wall connections in terms of hysteretic behaviour, ultimate load carrying capacity, energy dissipation capacity, stiffness degradation, ductility, viscous damping ratio, and crack pattern. All the connections exhibited similar load carrying capacity. The U-Hook connection exhibited higher ductility and energy dissipation when compared to the other three connections.

국내 설계하중의 피로특성을 적용한 고주탑 엑스트라도즈드교의 성능개선에 관한 연구 (A Study on the Performance Improvement of High-Pylon Extradosed Bridge adopting Fatigue Loading Condition)

  • 이영진;신승교;임윤묵
    • 대한토목학회논문집
    • /
    • 제30권2A호
    • /
    • pp.137-148
    • /
    • 2010
  • 본 연구에서는 기존 엑스트라도즈드교와 PSC 사장교 사이의 영역인 주탑고비 1/6~1/7의 고주탑을 적용하여 엑스트라도즈드교의 구조적, 경제적 특성을 평가하였다. 주탑고가 증가함에 따라 사재의 연직하중 분담율의 증가와 함께 변동응력도 증가하여 사재의 피로안정성이 주요 설계변수임을 알 수 있었다. 국내에서는 엑스트라도즈드교의 설계기준 부재로 인하여 일본 설계기준을 준용하고 있다. 또한, 피로 검토하중도 정립되지 않고 있어 본 연구에서는 일본 피로 검토하중에 대응하는 국내 활하중을 적용 검토하여 DL24 하중이 피로 검토하중으로 적정함을 알 수 있었다. 제시된 피로 검토하중을 적용하여 주탑고, 주거더의 강성, 케이블 면수 등을 매개변수로 엑스트라도즈드교의 구조적, 경제적 특성을 검토하였다. 본 연구의 결과로써 일면 케이블 배치가 이면 케이블 배치보다 경제적임을 알 수 있었다. 또한, 주탑고비가 1/6의 변단면 고주탑 엑스트라도즈교에서 연직 하중분담율이 30~50% 이내로 모든 사재가 허용변동응력 이내로 들어와 사재를 효율적으로 사용할 수 있어 가장 경제적임을 알 수 있었다. 본 연구를 통해 기존의 엑스트라도즈드교보다 높은 주탑고를 적용함에 따라 구조적, 경제적으로 효율성을 높일 수 있음을 확인하였다.

이중범프포일 공기베어링의 성능에 미치는 마찰효과 (Friction Effects on the Performance of Double-Bumped Air Foil Bearings)

  • 김영철;이동현;김경웅
    • Tribology and Lubricants
    • /
    • 제23권4호
    • /
    • pp.162-169
    • /
    • 2007
  • This paper deals with friction effects on the performance of double-bumped AFBs. The stiffness and damping coefficients of the double bump vary depending on the external load and its friction coefficient. The double bump can be either in the single or double active region depending on vertical deflection. The equivalent stiffness and damping coefficients of the bump system are derived from the vertical and horizontal deflection of the bump, including the friction effect. A static and dynamic performance analysis is carried out by using the finite difference method and the perturbation technique. The results of the performance analysis for a double-bumped AFB are compared with those obtained for a single-bumped AFB. This paper successfully proves that a double bumped AFB has higher load capacity, stiffness, and damping than a single-bumped AFB in a heavily loaded condition.

Experimental and numerical investigation of reinforced concrete beams containing vertical openings

  • Parol, Jafarali;Ben-Nakhi, Ammar;Al-Sanad, Shaikha;Al-Qazweeni, Jamal;Al-Duaij, Hamad J.;Kamal, Hasan
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.383-393
    • /
    • 2019
  • Horizontal openings in reinforced concrete (RC) beams are quite often used to accommodate service pipelines. Several research papers are available in the literature describing their effect. RC beams with vertical openings are commonly used to accommodate service lines in residential buildings in Kuwait. However, there are lack of design guidelines and best practices reported in the literature for RC beams with vertical openings, whereas the detailed guidelines are available for beams with horizontal openings. In the present paper, laboratory experiments are conducted on nine RC beams with and without vertical openings. Parametric study has been carried out using nonlinear finite element analysis (FEA) with changes in the diameter of the opening, various positions of the opening along the length and width of the beam, edge distance, etc. 50 finite element simulations were conducted. The FEA results are verified using the results from the laboratory experiments. The study showed that the load carrying capacity of the beam is reduced by 20% for the RC beam with vertical openings placed near the center of the beam compared to a solid beam without an opening. Significant reduction in load carrying capacity is observed for beams with an opening near the support (${\approx}15%$). The overall stiffness of the beam, crack pattern and failure modes were not affected due to the presence of the vertical opening. Furthermore, an artificial neural network (ANN) analysis is carried out using the FEA generated data. The results and observations from the ANN and FEA are in good agreement with experimental results.

프리캐스트 콘크리트 교량바닥판 female-female이음부의 전단실험 (shear Tests on female-to-female Type Joint between Precast Concrete Bridge Decks)

  • 김영진;김영진;김종희
    • 콘크리트학회지
    • /
    • 제10권6호
    • /
    • pp.161-168
    • /
    • 1998
  • 본 연구는 수직전단하중에 대한 프리캐스트 바닥판간 이음부거동을 규명하고 수직전단력 전달에 유리한 이음부 구조도출을 위해 female-female 형식의 이음부를 제안하고, 실험 및 유한요소해석을 수행한 것이다. 경사각, 이음부깊이/높이 및 구속응력을 변수로 총 18개의 실험체에 대한 실험 및 유한요소해석결과 ,이음부의균열저항성 개선을 위해서는 경사각이 60。, D/H가 1/4일 경우가 유리하며 측방향구속으로 이음부를 압축상태로 유지하는 것이 이음부 균열방지에 효과적임을 알았다.

WPC 방음판의 수직하중에 대한 내하성능 평가 (Load Carrying Capacity Evaluation of WPC Soundproof Panel Subjected to Vertical Loads)

  • 장태순;이일근;김철환;심재원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.823-826
    • /
    • 2014
  • The weight of soundproof panels is an important consideration in the design of both panels and supporting structures. The soundproof panels in noise barriers have to carry their net weight in wet condition respectively the reduced weight and also the weight of the above installed panels in wet condition without showing any failing. In this study, a compression test and a flexural test were performed to determine the maximum vertical load which a wood plastic composites (WPC) panel can bear. In addition, the maximum loading number and height of WPC panels in a noise barrier were calculated for full, simple, and continuous support conditions.

  • PDF

탄소성 모델에 의한 포물선 아치의 극한 내하력 평가 (The Ultimate Load Capacity of the Parabolic Arches by Elasto-Plastic Model)

  • 조진구;박근수
    • 한국농공학회지
    • /
    • 제44권3호
    • /
    • pp.92-100
    • /
    • 2002
  • The advent or high-strength steel has enabled the arch structures to be relatively light, durable and long-spanned by reducing the cross sectional area. On the other hand, the possibility of collapse may be increased due to the slender members which may cause the stability problems. The limit analysis to estimate the ultimate load is based on the concept of collapse mechanism that forms the plastic zone through the full transverse sections. So, it is not appropriate to apply it directly to the instability analysis of arch structures that are composed with compressive members. The objective of this study is to evaluate the ultimate load carrying capacity of the parabolic arch by using the elasto-plastic finite element model. As the rise to span ratio (h/L) varies from 0.0 to 0.5 with the increment of 0.05, the ultimate load has been calculated fur arch structures subjected to uniformly distributed vertical loads. Also, the disco-elasto-plastic analysis has been carried out to find the duration time until the behavior of arch begins to show the stable state when the estimated ultimate load is applied. It may be noted that the maximum ultimate lead of the parabolic arch occurs at h/L=0.2, and the appropriate ratio can be recommended between 0.2 and 0.3. Moreover, it is shown that the circular arch may be more suitable when the h/L ratio is less than 0.2, however, the parabolic arch can be suggested when the h/L ratio is greater than 0.3. The ultimate load carrying capacity of parabolic arch can be estimated by the well-known formula of kEI/L$^3$where the values of k have been reported in this study. In addition, there is no general tendency to obtain the duration time of arch structures subjected to the ultimate load in order to reach the steady state. Merely, it is observed that the duration time is the shortest when the h/L ratio is 0.1, and the longest when the h/L ratio is 0.2.

Seismic tests of RC shear walls confined with high-strength rectangular spiral reinforcement

  • Zhao, Huajing;Li, Qingning;Song, Can;Jiang, Haotian;Zhao, Jun
    • Steel and Composite Structures
    • /
    • 제24권1호
    • /
    • pp.1-13
    • /
    • 2017
  • In order to improve the deformation capacity of the high-strength concrete shear wall, five high-strength concrete shear wall specimens confined with high-strength rectangular spiral reinforcement (HRSR) possessing different parameters, were designed in this paper. One specimen was only adopted high-strength rectangular spiral hoops in embedded columns, the rest of the four specimens were used high-strength rectangular spiral hoops in embedded columns, and high-strength spiral horizontal distribution reinforcement were used in the wall body. Pseudo-static test were carried out on high-strength concrete shear wall specimens confined with HRSR, to study the influence of the factors of longitudinal reinforcement ratio, hoop reinforcement form and the spiral stirrups outer the wall on the failure modes, failure mechanism, ductility, hysteresis characteristics, stiffness degradation and energy dissipation capacity of the shear wall. Results showed that using HRSR as hoops and transverse reinforcements could restrain concrete, slow load carrying capacity degeneration, improve the load carrying capacity and ductility of shear walls; under the vertical force, seismic performance of the RC shear wall with high axial compression ratio can be significantly improved through plastic hinge area or the whole body of the shear wall equipped with outer HRSR.

Structural behaviour of HFRC beams retrofitted for shear using GFRP laminates

  • Vinodkumar, M.;Muthukannan, M.
    • Computers and Concrete
    • /
    • 제19권1호
    • /
    • pp.79-85
    • /
    • 2017
  • This paper summarizes the experimental study of the shear behaviour of Hybrid Fibre Reinforced Concrete (HFRC) beams retrofitted by using externally bonded Glass Fibre Reinforced Polymer (GFRP) laminates. To attain the set-out objectives of the present investigation, steel fibre of 1% and polypropylene fibre of 0.30% was used for hybrid steel-polypropylene fibre reinforced concrete: whereas for hybrid glass-polypropylene fibre reinforced concrete, glass fibre by 0.03% and polypropylene fibre of 0.03% by volume of concrete was used. In this study, 9 numbers of beams were cast and tested into three groups (Group I, II & III). Each group containing 3 numbers of beams, out of which one serve as a control beam or a hybrid steel-polypropylene fibre reinforced concrete beam or a hybrid glass - polypropylene fibre reinforced concrete beam and the remaining two beams were preloaded until shear cracks appeared up to 75% of ultimate load and then preloaded beams (damaged beams) were retrofitted with GFRP laminates at shear zone in the form of strips, as one beam in vertical position and another beam in inclined position to restrict the shear cracks. Finally, the retrofitted beams were loaded until failure and test results were compared. The experimental tests have been conducted to investigate various parameters of structural performance, such as load carrying capacity, crack pattern and failure modes, load-deflection responses and ductility relations. The test results revealed that beams retrofitted using GFRP laminates considerably increased the load carrying capacity. In addition, it was found that beams retrofitted with inclined strip offers superior performance than vertical one. Comparing the test results, it was observed that hybrid steel-polypropylene fibre reinforced concrete beam retrofitted with GFRP laminates showed enhanced behaviour as compared to other tested beams.

Experimental and analytical behavior of a prestressed U-shaped girder bridge

  • Wu, Xun;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.427-436
    • /
    • 2017
  • This paper presents an experimental and analytical investigation on the behavior of a U-shaped girder subjected to operation, cracking and ultimate loads. A full-scale destructive test was conducted on a U-shaped girder to study the cracking process, load-carrying capacity, failure mechanism and load-deformation relationships. Accordingly, the tested U-shaped girder was modeled using ANSYS and a non-linear element analysis was conducted. The investigation shows that the U-shaped girder meets the specified requirements of vertical stiffness, cracking and ultimate load capacity. Unfavorable torsional effect is tolerable during operation. However, compared with box girders, the U-shaped girder has a more transverse mechanical effect and longitudinal cracks are apt to occur in the bottom slab.