• 제목/요약/키워드: Vertical ground motion

검색결과 209건 처리시간 0.029초

300m 단층 래티스 돔의 면진 장치에 대한 지진 반응 해석 (Earthquake Response Analysis for Seismic Isolation System of Single Layer Lattice Domes With 300m Span)

  • 박강근;정미자;이동우
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.105-116
    • /
    • 2018
  • The objective of this study is to investigate the response reducing effect of a seismic isolation system installed between 300m dome and supports under both horizontal and vertical seismic ground motion. The time history analysis is performed to investigate the dynamic behavior of single layer lattice domes with and without a lead rubber bearing seismic isolation system. In order to ensure the seismic performance of lattice domes against strong earthquakes, it is important to investigate the mechanical characteristics of dynamic response. Horizontal and vertical seismic ground motions cause a large asymmetric vertical response of large span domes. One of the most effective methods to reduce the dynamic response is to install a seismic isolation system for observing seismic ground motion at the base of the dome. This paper discusses the dynamic response characteristics of 300m single layer lattice domes supported on a lead rubber seismic isolation device under horizontal and vertical seismic ground motions.

태권도와 합기도의 돌려차기시 타격 높이가 지면반력에 미치는 영향 (Effect of Target Height on Ground reaction force factors during Taekwondo and Hapkido Dollyuchagi Motion)

  • 양창수
    • 한국운동역학회지
    • /
    • 제12권1호
    • /
    • pp.193-204
    • /
    • 2002
  • The purpose of this study was to investigate the effect of martial art type and target height on the ground reaction force factors during Dollyuchagi motion. Data were collected using force plate. Five Taekwondo players and five Hapkido players were tested during Dollyuchagi motion to three different target heights(0.8, 1.2, 1.6 m). After analysis of kinetics using force plate data, maximum vertical ground reaction force was 1.62~2.44 BW, and impulse was $0.66\sim1.01 BW{\cdot}s$. Even though there was no difference for maximum ground reaction forces and impulse between Hapkido and Taekwondo, as target height was higher, impulse increased. Anterior-posterior and vertical ground reaction forces at kicking foot take-off were greater with target height, although there was no difference for medio-lateral force with target height. At impact there was significant difference for anterior-posterior ground reaction force between Hapkido and Taekwondo players. Taekwondo players' force (range, -0.23~-0.26 BW) was greater than Hapkido players's force (range, -0.08~-0.14 BW).

일반 역산 기법을 활용한 한국 지표 관측소 부지 효과 평가 (Korean Seismic Station Site Effect Estimation Using Generalized Inversion Technique)

  • 지현우;한상환
    • 한국지진공학회논문집
    • /
    • 제27권2호
    • /
    • pp.111-118
    • /
    • 2023
  • The 2017 Pohang earthquake afflicted more significant economic losses than the 2016 Gyeongju earthquake, even if these earthquakes had a similar moment magnitude. This phenomenon could be due to local site conditions that amplify ground motions. Local site effects could be estimated from methods using the horizontal-to-vertical spectral ratio, standard spectral ratio, and the generalized inversion technique. Since the generalized inversion method could estimate the site effect effectively, this study modeled the site effects in the Korean peninsula using the generalized inversion technique and the Fourier amplitude spectrum of ground motions. To validate the method, the site effects estimated for seismic stations were tested using recorded ground motions, and a ground motion prediction equation was developed without considering site effects.

Origin of the anomalously large upward acceleration associated with the 2008 Iwate-Miyagi Nairiku earthquake

  • Takabatake, Hideo;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.675-694
    • /
    • 2012
  • The 2008 Iwate-Miyagi Nairiku earthquake ($M_w$ 6.9, $M_{jma}$ 7.2) occurred on 14 June 2008 in Japan. The amplification and asymmetric waveform of the vertical acceleration at the ground surface recorded by accelerometers at station IWTH25, situated 3 km from the source, were remarkable in two ways. First, the vertical acceleration was extremely large (PGA = 38.66 $m/s^2$ for the vertical component, PGA = 42.78 $m/s^2$ for the sum of the three components). Second, an unusual asymmetric waveform, which is too far above the zero acceleration axis, as well as large upward spikes were observed. Using a multidegree-of-freedom (MDF) system consisting of a one-dimensional continuum subjected to vertical acceleration recorded at a depth of 260 m below ground level, the present paper clarifies numerically that these singular phenomena in the surface vertical acceleration records occurred as a result of the jumping and collision of a layer in vertical motion. We herein propose a new mechanism for such jumping and collision of ground layers. The unexpected extensive landslides that occurred in the area around the epicenter are believed to have been produced by such jumping under the influence of vertical acceleration.

Modeling dynamic interactions between the support foot and the ground in bipedal walking

  • Jung, Moon-Ryul
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제1권2호
    • /
    • pp.201-212
    • /
    • 1995
  • This paper presents a new method of dynamics-based synthesis of bipedal, especially human, walking. The motion of the body at a time point is determined by ground reaction force and torque under the support foot and joint torques of the body at that time point. Motion synthesis involves specifying conditions that constrain ground reaction force and torque, and joint torques so that a given desired motion may be achieved. There are conditions on a desired motion which end-users can think of easily, e.g. the goal position and orientation of the swing foot for a single step and the time period of a single step. In this paper, we specify constraints on the motion of the support foot, which end-users would find difficult to specify. They are constraints which enforce non-sliding, non-falling, and non-spinning the support foot. They are specified in terms of joint torques and ground reaction force and torque. To satisfy them, both joint torques and ground reaction force and torque should be determined appropriately. The constraints on the support foot themselves do not give any good clues as to how to determine ground reaction force and torque. For that purpose, we specify desired trajectories of the application point of vertical ground reaction force (ground pressure) and the application point of horizontal ground reaction (friction) force. The application points of vertical pressure and friction force are good control variables, because they are indicators to kinds of walking motions to synthesize. The synthesis of a bipedal walking motion, then, consists of finding a trajectory of joint torques to achieve a given desired motion, so that the constraints are satisfied under the condition of the prescribed center of pressure and center of friction. Our approach is distinguished from many other approaches, e.g. the inverted-pendulum approach, in that it captures and formulates dynamics of the support foot and reasonable constraints on it.

  • PDF

국내외 판내부 지진기록을 이용한 한국 표준수직설계스펙트럼의 개발 (Development of Korean Standard Vertical Design Spectrum Based on the Domestic and Overseas Intra-plate Earthquake Records)

  • 김재관;김정한;이진호;허태민
    • 한국지진공학회논문집
    • /
    • 제20권6호
    • /
    • pp.413-424
    • /
    • 2016
  • The vertical design spectrum for Korea, which is known to belong to an intra-plate region, is developed from the ground motion records of the earthquakes occurred in Korea and overseas intra-plate regions. From the statistical analysis of the vertical response spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. The developed design spectrum is valid for the estimation both spectral acceleration and displacement. The ratio of vertical to horizontal response spectrum for each record is calculated. Statistical analysis of the ratios rendered the vertical to horizontal ratio (V/H ratio). Subsequently the ratio between the peak vertical ground acceleration to the horizontal one is obtained.

Influence of concurrent horizontal and vertical ground excitations on the collapse margins of non-ductile RC frame buildings

  • Farsangi, E. Noroozinejad;Yang, T.Y.;Tasnimi, A.A.
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.653-669
    • /
    • 2016
  • Recent earthquakes worldwide show that a significant portion of the earthquake shaking happens in the vertical direction. This phenomenon has raised significant interests to consider the vertical ground motion during the seismic design and assessment of the structures. Strong vertical ground motions can alter the axial forces in the columns, which might affect the shear capacity of reinforced concrete (RC) members. This is particularly important for non-ductile RC frames, which are very vulnerable to earthquake-induced collapse. This paper presents the detailed nonlinear dynamic analysis to quantify the collapse risk of non-ductile RC frame structures with varying heights. An array of non-ductile RC frame architype buildings located in Los Angeles, California were designed according to the 1967 uniform building code. The seismic responses of the architype buildings subjected to concurrent horizontal and vertical ground motions were analyzed. A comprehensive array of ground motions was selected from the PEER NGA-WEST2 and Iran Strong Motions Network database. Detailed nonlinear dynamic analyses were performed to quantify the collapse fragility curves and collapse margin ratios (CMRs) of the architype buildings. The results show that the vertical ground motions have significant impact on both the local and global responses of non-ductile RC moment frames. Hence, it is crucial to include the combined vertical and horizontal shaking during the seismic design and assessment of non-ductile RC moment frames.

라이즈 스팬 비에 의한 200m 허니컴 래티스 돔의 동적 응답 분석 (Dynamic Response Analysis of 200m Honeycomb Lattice Domes by Rise Span Ratio)

  • 박강근;정미자
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.51-61
    • /
    • 2019
  • The objective of this study is to analysis the seismic response of 200m spanned honeycomb lattice domes under horizontal and up-down ground motion of El Centro earthquake. For the analysis of seismic response of the honeycomb lattice domes by rise/span ratio, the time history analysis is used for the estimation of the dynamic response. The low rise lattice dome is less deformed and less stressed than the high rise lattice dome for the earthquake ground motion. The 3-dimensional earthquake response is not significantly different the dynamic response of one directional ground motion. The earthquake response of domes with LRB isolation system is significantly reduced for the asymmetric vertical deformation and the horizontal and vertical accelerations.

Seismic bearing capacity of shallow footings on cement-improved soils

  • Kholdebarin, Alireza;Massumi, Ali;Davoodi, Mohammad
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.179-190
    • /
    • 2016
  • A single rigid footing constructed on sandy-clay soil was modeled and analyzed using FLAC software under static conditions and vertical ground motion using three accelerograms. Dynamic analysis was repeated by changing the elastic and plastic parameters of the soil by changing the percentage of cement grouting (2, 4 and 6 %). The load-settlement curves were plotted and their bearing capacities compared under different conditions. Vertical settlement contours and time histories of settlement were plotted and analyzed for treated and untreated soil for the different percentages of cement. The results demonstrate that adding 2, 4 and 6 % of cement under specific conditions increased the dynamic bearing capacity 2.7, 4.2 and 7.0 times, respectively.

지진지반운동의 수직성분을 고려한 증진지역 건축구조물의 지진응답평가 (Evaluation of Seismic Responses for Building in Moderate Seismicity Regions Considered Vertical Earthquake Ground Motions)

  • 한덕전;고현
    • 한국공간구조학회논문집
    • /
    • 제9권1호
    • /
    • pp.69-78
    • /
    • 2009
  • 최근의 근단층지반운동인 Northridge 지진(1994, 미국), Kobe 지진(1995, 일본), Izmit 지진(1990, 터키)은 큰 수직성분의 영향으로 건축물 및 교량에 심각한 손상을 주었다. 일반적인 건축구조물의 내진설계에서 지진하중의 수직성분을 고려하여 설계하는 경우는 드물다. 본 연구에서는 지진하중의 수직성분 영향의 고려 유무에 따른 예제구조물의 기둥부재의 축력의 변화와 부재 단부의 소성힌지회전각을 산정하여 시스템의 손상상태를 평가하여 보았다. 해석결과 축력의 증가는 기둥부재의 손상에 의한 전체 구조시스템의 story collapse mechanism의 가능성을 주게 되므로 근단층지반운동이 예상되는 부분에서는 지진하중의 수직성분에 대한 영향을 고려하여야할 것으로 판단된다.

  • PDF