• Title/Summary/Keyword: Vertical force

Search Result 1,476, Processing Time 0.026 seconds

The Effect of Change in Gait Speed on Vertical Force of the Cane and Distribution of Affected Foot in the Persons with Chronic Stroke (보행속도의 변화가 만성 뇌졸중 환자 지팡이의 수직력과 마비측 발의 체중지지에 미치는 영향)

  • Jung, Kyoung-Sim;Seo, Hyun-Du;Lee, Kwan-Woo;Chung, Yi-Jung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.2
    • /
    • pp.223-230
    • /
    • 2012
  • Purpose : The purpose of this study was to analyze weight bearing of cane and affected foot at different speeds during walking. Methods : Thirteen subjects (6 males, 7 females) with stroke enrolled in the study. A foot sensor and an instrumented cane were integrated to analyze the vertical peak force on the affected foot and the cane. Results : The applied vertical peak force on the cane were $12.02{\pm}4.80%$ (slow speed), $7.97{\pm}3.95%$ (comfortable speed), and $6.86{\pm}3.30%$ (fast speed) body weight, respectively. The results indicated significantly lower vertical peak force on the affected foot in the low speed walking condition when compared to the fast walking (p<.05) and the comfortable walking (p<.05) conditions. The correlations between TUG and vertical peak force on the cane and affected foot were .71, and -.70 (p<.01). There was a higher correlation between the vertical peak force on the cane and affected foot were -.87(p<.01). Conclusion : In conclusion, slower walking speed applied greater vertical peak force on the cane. On the contray, slower walking speed applied less vertical peak force on the affected foot. Further studies, duration of force should be measured at different speeds during walking in lower and higher functioning hemiparetic subjects, as its use may mask underlying gait impairment.

Countermovement Jump Strategy Changes with Arm Swing to Modulate Vertical Force Advantage

  • Kim, Seyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • Objective: We obtained force-displacement curves for countermovement jumps of multiple heights and examined the effect of an arm swing on changes in vertical jumping strategy. Countermovement jumps with hands on hips (Condition 1) and with an arm swing (Condition 2) were evaluated to investigate the mechanical effect of the arm movement on standing vertical jumps. We hypothesized that the ground reaction force (GRF) and/or center of mass (CoM) motion resulting from the countermovement action would significantly change depending on the use of an arm swing. Method: Eight healthy young subjects jumped straight up to five different levels ranging from approximately 10% (~25 cm) to 35% (~55 cm) of their body heights. Each subject performed five sets of jumps to five randomly ordered vertical elevations in each condition. For comparison of the two jumping strategies, the characteristics of the boundary point on the force-displacement curve, corresponding to the vertical GRF and the CoM displacement at the end of the countermovement action, were investigated to understand the role of arm movement. Results: Based on the comparison between the two conditions (with and without an arm swing), the subjects were grouped into type A and type B depending on the change observed in the boundary point across the five different jump heights. For both types (type A and type B) of vertical jumps, the initial vertical force at the start of push-off significantly changed when the subjects employed arm movement. Conclusion: The findings may imply that the jumping strategy does change with the inclusion of an arm swing, predominantly to modulate the vertical force advantage (i.e., the difference between the vertical force at the start of push-off and the body weight).

Development of Tire Vertical Force Estimation Algorithm in Real-time using Tire Inner Surface Deformation (타이어 내부 표면 변형량을 이용한 타이어 수직하중 실시간 추정 알고리즘 개발)

  • Lee, Jaehoon;Kim, Jin-Oh;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.142-147
    • /
    • 2013
  • Over the past few years, intelligent tire is developed very actively for more accurate measurement of real-time tire forces generated during vehicle driving situation. Information on the force of intelligent tire could be used very usefully to chassis control systems of a vehicle. Intelligent tire is based on deformation of tire's inner surface from the waveform of a SAW, or Surface Acoustic Wave. The tire vertical force is estimated by using variance analysis of sensor signals. The estimated tire vertical force is compared with the tire vertical force generated during vehicle driving situation in real-time environment. The scope of this paper is a correlation study between the measured sensor signals and the tire vertical force generated during vehicle driving situation.

Decoupling Control of Tractive and Vertical Force of Linear Induction Motor (선형 유도전동기의 추진력 및 수직력 제어 방식)

  • Oh, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.289-291
    • /
    • 1996
  • Linear induction motor(LIM) is widely used to drive magnetic levitation train. To drive LIM, different control method compared with conventional rotary type machine is needed. Since vertical force is generated inherently and it effects on the levitation system, vertical force should be kept constant for stable levitation. To keep vertical force constant, slip frequency should be kept constant. Once slip frequency is kept constant, tractive force can be controlled by adjusting motor currents. In this paper, control methods used so far arc analyzed with some experimental results and decoupling control algorithm is proposed to control tractive and vertical force separately. Control algorithm is verified through simulation.

  • PDF

Relationship between Impact and Shear Forces, and Shock during Running (달리기 시 충격력과 충격 쇼크 변인들과의 관계)

  • Park, Sang-Kyoon;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Objective: The purpose of this study was to determine the relationship between impact and shear peak force, and tibia-accelerometer variables during running. Method: Twenty-five male heel strike runners (mean age: 23.5±3.6 yrs, mean height: 176.3±3.3 m/s, mean mass: 71.8±9.7 kg) were recruited in this study. The peak impact and anteroposterior shear forces during treadmill running (Bertec, USA) were collected, and impact shock variables were computed by using a triaxial accelerometer (Noraxon, USA). One-way ANOVA was used to test the influence of the running speed on the parameters. Pearson's partial correlation was used to investigate the relationship between the peak impact and shear force, and accelerometer variables. Results: The running speed affected the peak impact and posterior shear force, time, slope, and peak vertical and resultant tibial acceleration, slope at heel contact. Significant correlations were noticed between the peak impact force and peak vertical and resultant tibia acceleration, and between peak impact average slope and peak vertical and resultant tibia acceleration average slope, and between posterior peak (FyP) and peak vertical tibia acceleration, and between posterior peak instantaneous slop and peak vertical tibial acceleration during running at 3 m/s. However, it was observed that correlations between peak impact average slope and peak vertical tibia acceleration average slope, between posterior peak time and peak vertical and resultant tibia acceleration time, between posterior peak instantaneous slope and peak vertical tibial acceleration instantaneous slope during running at 4 m/s. Conclusion: Careful analysis is required when investigating the linear relationship between the impact and shear force, and tibia accelerometer components during relatively fast running speed.

Effects of Vertical Alignment of Leg on the Knee Trajectory and Pedal Force during Pedaling

  • Kim, Daehyeok;Seo, Jeongwoo;Yang, Seungtae;Kang, DongWon;Choi, Jinseung;Kim, Jinhyun;Tack, Gyerae
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.303-308
    • /
    • 2016
  • Objective: This study evaluated the vertical and horizontal forces in the frontal plane acting on a pedal due to the vertical alignment of the lower limbs. Method: Seven male subjects (age: $25.3{\pm} 0.8years$, height: $175.4{\pm}4.7cm$, weight: $74.7{\pm}14.2kg$, foot size: $262.9{\pm}7.6mm$) participated in two 2-minute cycle pedaling tests, with the same load and cadence (60 revolutions per minute) across all subjects. The subject's saddle height was determined by the height when the knee was at $25^{\circ}$ flexion when the pedal crank was at the 6 o'clock position (knee angle method). The horizontal force acting on the pedal, vertical force acting on the pedal in the frontal plane, ratio of the two forces, and knee range of motion in the frontal plane were calculated for four pedaling phases (phase 1: $330{\sim}30^{\circ}$, phase 2: $30{\sim}150^{\circ}$, phase 3: $150{\sim}210^{\circ}$, phase 4: $210{\sim}330^{\circ}$) and the complete pedaling cycle. Results: The range of motion of the knee in the frontal plane was decreased, and the ratio of vertical force to horizontal force and overall pedal force in the complete cycle were increased after vertical alignment. Conclusion: The ratio of vertical force to horizontal force in the frontal plane may be used as an injury prevention index of the lower limb.

Force-Displacement Relationship Diagram for Shear Connections in Vertical Construction Joints of Slurry Walls (지하연속벽 수직시공이음부의 전단접합부에 대한 힘-변위 상관도)

  • Lee, Jeong-Young;Kim, Seung-Weon;Kim, Doo-Kie
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.397-398
    • /
    • 2023
  • To design the shear connections for vertical construction joints of slurry walls, it is necessary to create a force-displacement curve that represents the structural performance of the shear connections. This paper proposes a method for preparing the force-displacement curve of the shear connections including major considerations.

  • PDF

A Development of Device for Measurement of Vertical Ground Reaction Force(II) (수직 반작용력 측정 장치 개발(II))

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.341-354
    • /
    • 2003
  • The purpose of this study was to develop the uniaxial force plate system which is measured by the vertical force. The VGRF(vertical ground reaction force) 1.0 was composed of 2 bath digital scales, 2 indicaters, and analyzing software. This system was newly renovated to VGRF 2,0 which are 2 industrial digital scales, 2 adjustable indicators, and enforced analyzing software. Changes of the new system were as follows. First, the height of the plate was 75% lower than before. Second, sensing ability of the load cell was changed from 90 - 0.05kg to 300 - 0.1kg. Third, the speed of data processing was changed from 17 per second to 60 per second. Fourth, analyzing software was enforced to develop and calculate the data. For the test of the system, two different types(bare foot, high-heeled shoes) gait was adopted. highly skilled female walker(23yrs, height 165cm, body mass 46.8kg) participated for the experimental study. During the dynamic performance(gait analysis), the data of each load cell were very similar to the previous studies. Specifically, bare foot walking had less vertical force than high-heeled shoes. Consequently, VGRF 2.0 can sense the general dynamic movements as well as static load conditions.

A STUDY OF WORKING EFFICIENCY AND FILE DEFORMATION OF GT ROTARY FILE IN CURVED CANALS (GT rotary file을 이용한 만곡 근관형성시 작업 효율 및 file 변형 발생에 관한 연구)

  • 신주희;백승호;배광식;임성삼;윤수한;김병현
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.418-435
    • /
    • 2001
  • Root canal preparation process is of utmost importance in successful treatment of root canal. Also, one of the most important purpose of the root canal preparation is to enlarge the root canal three dimensionally without changing the curvature of the root canal However as the curvature of the root canal increases, there are many difficulties involved in formation of optimum root canal. Therefore in order to solve the above mentioned problems, new developments in methods of root canal preparation and equipments for such purposes were made. Recently, vigorous studies about newly introduced engine-driven nickel-ti-tanium rotary file are conducted. As shown in research results to dates, it is well established that the use of nickel-titanium file is better suited for curved root canal than stainless steel file in maintaining the curvature or root canal and reducing the deformation of root canal. However it is also acknowledged that there are a few discrepancies in research results according to protocol, due to failure to remove variables in experiments. In addition, although it is recommended by the manufacturer that the GT rotary file should maintain a low rotational speed of 150~350rpm and 'light pressure' as light as not to break the lead of a pencil, academic studies about the vertical force which is not yet standardized are not sufficiently explored. Therefore, this research devised and utilized a special research equipment to standardize the appropriate range of vertical force for GT rotary file through experiments by breaking of the lead of a pencil as expressed by the manufacturer and to accurately measure factors involved through repeating and recreating the environment of root canal preparation. Forming nine experimental groups by varying the vertical forces (150g. 220g, 300g) and rpm (150rpm, 250rpm, 350rpm), the effects of changing vertical forces and rpm on working efficiency were measured in terms of time expended in root canal preparation by crown-down method using a transparent resin block with 35 degree curvature and GT rotary file (z-test). The following research using this special research equipment that involved nine experimental groups and varying the vertical force for root canal preparation from 300g which is within the normal vertical force range to 700g and 1000g which fall outside the normal rpm range. The results were as follows : 1. Analysis of the experiment results revealed that the time spent in root canal preparation decreased as the vertical forces and rpm increased (p<0.05). Also, the effects of rpm were greater than those of the vertical forces within the normal vertical force range ($\beta$-weight test). 2. Observation of the deformation of GT rotary file revealed that deformation increases in a direct correlation with the vertical force increase and in a reverse correlation with the rpm decrease. In the case of the vertical forces close to the normal range, the probability of GT rotary file deformation were quite different depending on the rpm changes. In the case of greater vertical forces, the occurrences of deformation of the file were more frequent regardless of the rpm changes. 3. Deformation and breakage of file were also commonly observed in the expended time measurement experiments and GT rotary file deformation experiments in which low speed rpm (150rpm) was used and at the curved portion of the resin block.

  • PDF

Horizontal only and horizontal-vertical combined earthquake effects on three R/C frame building structures through linear time-history analysis (LTHA): An implementation to Turkey

  • Selcuk Bas;Mustafa A. Bilgin
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.329-346
    • /
    • 2024
  • In this study, it is aimed to investigate the vertical seismic performance of reinforced concrete (R/C) frame buildings in two different building stocks, one of which consists of those designed as per the previous Turkish Seismic Code (TSC-2007) that does not consider the vertical earthquake load, and the other of which consists of those designed as per the new Turkish Seismic Code (TSCB-2018) that considers the vertical earthquake load. For this aim, three R/C buildings with heights of 15 m, 24 m and 33 m are designed separately as per TSC-2007 and TSCB-2018 based on some limitations in terms of seismic zone, soil class and structural behavior factor (Rx/Ry) etc. The vertical earthquake motion effects are identified according to the linear time-history analyses (LTHA) that are performed separately for only horizontal (H) and combined horizontal+vertical (H+V) earthquake motions. LTHA is performed to predict how vertical earthquake motion affects the response of the designed buildings by comparing the linear response parameters of the base shear force, the base overturning, the base axial force, top-story vertical displacement. Nonlinear time-history analysis (NLTHA) is generally required for energy dissipative buildings, not required for design of buildings. In this study, the earthquake records are scaled to force the buildings in the linear range. Since nonlinear behavior is not expected from the buildings herein, the nonlinear time-history analysis (NLTHA) is not considered. Eleven earthquake acceleration records are considered by scaling them to the design spectrum given in TSCB-2018. The base shear force is obtained not to be affected from the combined H+V earthquake load for the buildings. The base overturning moment outcomes underline that the rigidity of the frame system in terms of the dimensions of the columns can be a critical parameter for the influence of the vertical earthquake motion on the buildings. In addition, the building stock from TSC-2007 is estimated to show better vertical earthquake performance than that of TSCB-2018. The vertical earthquake motion is found out to be highly effective on the base axial force of 33 m building rather than 15 m and 24 m buildings. Thus, the building height is a particularly important parameter for the base axial force. The percentage changes in the top-story vertical displacement of the buildings designed for both codes show an increase parallel to that in the base axial force results. To extrapolate more general results, it is clear to state that many buildings should be analyzed.