• Title/Summary/Keyword: Vertical design method

Search Result 949, Processing Time 0.027 seconds

Mathematical Optimization Models for Determination of Optimal Vertical Alignment (종단선형설계 최적화 기법에 관한 연구)

  • 강성철;전경수;박영부
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.3
    • /
    • pp.5-13
    • /
    • 1994
  • In the fields of rail and road design, most vertical alignment design have been thus far heavily dependent upon trial-and-errors of experienced engineers. However, it has long been inefficient in productivity of designing process. In order to overcome this inefficiency, this paper presents the optimal vertical alignment design method using mathematical optimization techniques. For optimization, mathematical model to minimize the construction cost is formulated and the separable programming technique and the Zoutendijk method are introduced to solve it. As result, it is shown that this optimization technique can give efficient solutions to all vertical alignment design fields with properly-estimated cost function.

  • PDF

The Evaluation of Structural Stability of Corrugated Steel Plate Method applied in High-Speed Railway Vertical Tunnel Structures (고속철도 수직구 터널구조물에 적용된 파형강판공법의 구조적 안정성 검토)

  • Chung, Jee-Seung;Shin, Hwa-Cheol;Kim, Jin-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.64-69
    • /
    • 2016
  • In this paper, structural analysis of High-Speed railway vertical tunnel structures was performed to verify the structural stability. The corrugated steel plate method was applied to the vertical tunnel structures for its simple construction method and low cost. The structural stability of Wall, Connection and Storage section was performed with LRFD and ASD design method at joint part, buckling, stress and plastic hinge. From the results, all of vertical tunnel structures shown the structural stability regardless of design method and structure types. So, the application of corrugated steel plate in vertical tunnel structures instead of cast-in-placed concrete was quite enough.

Seismic Design of Vertical Shaft using Response Displacement Method (응답변위법을 적용한 수직구의 내진설계)

  • Kim, Yong-Min;Jeong, Sang-Seom;Lee, Yong-Hee;Jang, Jung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.241-253
    • /
    • 2010
  • For seismic design of a vertical shaft, three-dimensional Finite Element (FE) analyses were performed to evaluate the accurate response of a vertical shaft and to apply a Response Displacement Method (RDM). Special attention is given to the evaluation of seismic base and response displacement of surrounding soil, estimation of load and loading method. Based on the result, it was found that shear wave velocity of seismic base greater than 1500m/s was appropriate for the seismic design. It was also found that double cosine method which evaluates a response displacement of surrounding soil was most appropriate to consider the characteristic of multi-layered soil. Finally, shape effect of the structure was considered to clarify the dynamic behavior of vertical shaft and it would be more economical vertical shaft design when a vertical shaft was analyzed by using RDM.

Reliability-Based Design of Vertical Drain Method Considering Uncertainties in Geotechnical Property (연약지반의 불확실성을 고려한 연직배수공법의 신뢰성 설계)

  • Kim, Byung-Il;Sah, Sang-Ho;Kim, Bang-Sig;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1148-1154
    • /
    • 2006
  • Composite discharge capacity tests and smear effect tests are carried out to estimate the parameters for the reliability-based design of vertical drain method. Also the probabilistic and deterministic solutions of radial consolidation theory are presented. It compared to the result of reliability-based design and that of deterministic design using the tested and estimated parameters. The results indicated that the drain spacing is larger the deterministic method than the probabilistic method because the former is not considered the uncertainties in the properties of soil. The divergence of methods is dependent on the probability of achieving target degree of consolidation by a given time and the coefficient of variation(COV) of the coefficient of horizontal consolidation$(c_h)$.

  • PDF

A Vertical File Partitioning Method Using SOFM in Database Design (데이터베이스 설계에서 SOFM 을 이용한 화일 수직분할 방법)

  • Shin, K.H.;Kim, J.Y.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.661-671
    • /
    • 1998
  • It is important to minimize the number of disk accesses which is necessary to transfer data in disk into main memory when processing transactions in physical database design. A vertical file partitioning method is used to reduce the number of disk accesses by partitioning relations vertically and accessing only necessay fragments. In this paper, SOFM(Self-Organizing Feature Maps) network is used to solve vertical partitioning problems. This paper shows that SOFM network is efficient in solving vertical partitioning problem by comparing approximate solution of SOFM network with optimal solution of N-ary branch and bound method. And this paper presents a heuristic algorithm for allocating duplicate attributes to vertically partitioned fragments. As branch and bound method requires particularly much computing time to solve large-sized problems, it is shown that SOFM network is able to overcome this limitation of branch and bound method and solve large-sized problems efficiently in a short time.

  • PDF

Structural Optimization for Small Scale Vertical-Axis Wind Turbine Blade using Response Surface Method (반응표면법을 이용한 소형 수직축 풍력터빈 블레이드의 구조 최적화)

  • Choi, Chan-Woong;Jin, Ji-Won;Kang, Ki-Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.22-27
    • /
    • 2013
  • The purpose of this paper is to perform the structural design of the small scale vertical-axis wind turbine (VAWT) blade using a response surface method(RSM). First, the four design factors that have a strong influence on the structural response of blade were selected. Analysis conditions were calculated by using the central composite design(CCD), which is a typical design of experiment for the response surface method(RSM). Also, the significance of the central composite design(CCD) was verified using analysis of variance(ANOVA). The finite element analysis was performed for the selected analytical conditions for the application of response surface method(RSM). Finally, a optimization problem was solved with a objective function of blade weight and a constraint of allowable stress to achieve a optimal structural design of blade.

Design Considerations and Method for Vertical Construction Joints of Slurry Walls Used as Permanent Basement Walls (영구벽체로 사용하는 지하연속벽 수직시공이음부의 설계방법)

  • Lee, Jeong-Young;Kim, Seung-Weon;Kim, Doo-Kie
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.395-396
    • /
    • 2023
  • The current building structural standards present design requirements for the vertical construction joint of a slurry wall when it is used as a permanent wall. This paper proposes design methods and considerations according to the requirements of the relevant standards.

  • PDF

Analysis of Allowable Strength of Reused Vertical Members of System Scaffolds and System Supports (재사용 시스템비계와 시스템동바리 수직재의 허용강도 분석)

  • Park, Jin-Suk;Ko, Sang Seom;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.29-36
    • /
    • 2021
  • The allowable strength based on experiments and the design allowable strength calculated using the design criteria were compared, which suggested a ratio between the allowable strengths for the reused vertical members of the system scaffolding and system support. By investigating a total of 421 certification reports for reused vertical members, the experimental allowable strengths were collected. Using design criteria such as the road bridge design and KDS 14 30 10, the design allowable strengths were calculated for various slenderness ratios. For the system scaffolding, the average ratio between the experimental and design allowable strengths was calculated to be 0.880 by assuming a normal distribution for all specimens. However, by analyzing the strength ratio according to the slenderness ratio, the lowest average strength ratio was found to be at least 0.844. Therefore, it is reasonable to assume that the allowable strength of the reused vertical members was 80-84% of the design allowable strength. In addition, assuming the allowable strength to be 85% of the design allowable strength is a possible method for reused vertical members of system supports.

Management of Vertical Control Points by Vector Method for Determination of Highway and Railroad Vertical Alignment (도로 및 철도의 종단선형 탐색을 위한 벡터방식의 Vertical Control Point 처리기법 연구)

  • Kim, Jeong Hyun;Han, Chang-Gun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2033-2040
    • /
    • 2013
  • There have been noticeable developments for the optimization of the highway and railroad alignments with the IT and computerized tools. The designers expect that all of the quantitative design elements should be considered. This study developed a methodology which can be useful for the vertical alignment design. It provides a accurate "vertical control point" searching method, and makes the vertical alignment optimization more efficiently. The vector method makes the searching faster and calculates more accurate application sections. The results from this method generate more reliable vertical alignments than the conventional raster method for less computation time.

Estimation of Vertical Vibration using Characteristics of Transfer Function (전달함수 특성을 이용한 연직진동 특성 예측)

  • Woo, Woon-Taek;Park, Tae-Won;Chung, Lan
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.171-176
    • /
    • 2001
  • Recent building structures are superior in its ability but they are light and flexible, and so have problems of vibration. In general, the problem of vertical vibration is not considered in structural design. However, in terms of serviceability for inhabitants in buildings, the estimation of vibration in design stage is important. Characteristics of vertical vibration is changed by modeling method of beam-column joint. To check the characteristics of vertical vibration, many tests and analyses were conducted on constructing building in Seoul. Results of tests and analyses were compared using transfer function. As a results, to check the vertical vibration, the cramp ratio of beam-column joint must be considered and reduced in structural design.

  • PDF