• Title/Summary/Keyword: Vertical curve

Search Result 354, Processing Time 0.024 seconds

Development of a Highway Vertical Alignment Analysis Algorithm and Field Test Using a Vehicle with Multiple Sensors (각종 센서를 장착한 차량을 이용한 종단선형 분석 알고리즘 개발 및 현장 검증에 관한 연구)

  • Yun, Deok-Geun;Seong, Jeong-Gon
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.2 s.95
    • /
    • pp.157-165
    • /
    • 2007
  • In this research, a vertical alignment analysis algorithm was developed. The developed algorithm used acquired data from a vehicle with multiple sensors such as a global positioning system (GPS) an inertial navigation system (INS), and a distance measuring unit (DMI) to collect information about vehicle position and altitude. The vertical alignment analysis algorithm includes the identification of vertical tangent sections, the beginning and ending points of vertical curves, and the calculation of length of vortical curves. Also, the algorithm can help build models for vertical tangent sections and vertical curve sections. In order to verify the algorithm, a field survey was conducted at an actual highway section and the result of the field survey was compared to a highway CAD drawing.

Development of Korean Standard Vertical Design Spectrum Based on the Domestic and Overseas Intra-plate Earthquake Records (국내외 판내부 지진기록을 이용한 한국 표준수직설계스펙트럼의 개발)

  • Kim, Jae Kwan;Kim, Jung Han;Lee, Jin Ho;Heo, Tae Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.413-424
    • /
    • 2016
  • The vertical design spectrum for Korea, which is known to belong to an intra-plate region, is developed from the ground motion records of the earthquakes occurred in Korea and overseas intra-plate regions. From the statistical analysis of the vertical response spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. The developed design spectrum is valid for the estimation both spectral acceleration and displacement. The ratio of vertical to horizontal response spectrum for each record is calculated. Statistical analysis of the ratios rendered the vertical to horizontal ratio (V/H ratio). Subsequently the ratio between the peak vertical ground acceleration to the horizontal one is obtained.

An Experimental Study and Numerical Analysis on Load Transfer Characteristics of Drilled Shafts (현장타설말뚝의 하중전이 특성에 대한 실험 및 해석적 연구)

  • Eonsang Park;Seungdo Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.5-14
    • /
    • 2023
  • In this study, the load transfer characteristics of the base and skin of drilled shafts were analyzed and the load sharing ratio was calculated by performing a load transfer large-scale model test and three-dimensional numerical analysis considering the similarity of drilled shafts, which is the design target. From the linear behavior of drilled shafts shown in the large-scale model test and 3D numerical analysis results, the skin load transition curve for the design conditions of this study was proposed by Baquelin et al., and the base load transition curve was proposed by Baquelin et al. For the horizontal load transition curve, the formula proposed by Reese et al. was confirmed to be appropriate. The test value was slightly larger than the numerical analysis value for the axial load at the rock socketing, but the load sharing ratio at the rock socketing increased, on average, about 27.8% as the vertical load increased. The analysis value of the vertical settlement of the pile head under the vertical load was evaluated to be slightly smaller than the test value, and the maximum vertical settlement of the pile head in the model test and analysis maximum vertical load was 10.6 mm in the test value and 10.0 mm in the analysis value, and the maximum vertical settlement value at the base of the pile was found to be a test value of 2.0 mm and an analysis value of 1.9 mm. The horizontal displacement at the head of the column (ground surface) and the head of the pile during the horizontal load was found to agree relatively well with the test value and the analysis value. As a result of the model soil test, the horizontal load measured at the maximum horizontal displacement of 38.0 mm was evaluated to be 24,713 kN, and the horizontal load in the numerical analysis was evaluated to be 26,073 kN.

Infiltration Characteristics for Unsaturated Residual Soil (화강풍화토의 불포화 침투특성에 관한 연구)

  • 김영욱;김도형;성상규;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.147-152
    • /
    • 2001
  • This study investigated one-dimensional vertical infiltration to an unsaturated residual soil by numerical solutions, FDM. In order to estimate the parameters needed for numerical analysis, tire soil-water characteristic curve(SWCC) of Shinnae-dong soil, one of the most typical residual soils in Korea, were experimentally obtained. Then, the statistical analysis for obtaining the SWCC was performed. The numerical solution to the linearized governing equation for unsaturated groundwater flow provides the infiltration characteristics for the unsaturated residual soil represented by transient pressure profiles and water contents profiles.

  • PDF

Estimate of Wave Overtopping Rate on Vertical Wall Using FUNWAVE-TVD Model (FUNWAVE-TVD 모델을 이용한 직립구조물의 월파량 산정)

  • Kwak, Moon Su;Kobayashi, Nobuhisa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2021
  • This study established a numerical model capable of calculating the wave overtopping rate of coastal structures by nonlinear irregular waves using the FUNWAVE-TVD model, a fully nonlinear Boussinesq equation model. Here, a numerical model was established by coding the mean value approach equations of EurOtop (2018) and empirical formula by Goda (2009), and adding them as subroutines of the FUNWAVE-TVD model. The verification of the model was performed by numerically calculating the wave overtopping rate of nonlinear irregular waves on vertical wall structures and comparing them with the experimental results presented in EurOtop (2018). As a result of the verification, the numerical calculation result according to the EurOtop equation of this model was very well matched with the experimental result in all relative freeboard (Rc/Hmo) range under non-impulsive wave conditions, and the numerical calculation result of empirical formula was evaluated slightly smaller than the experimental result in Rc/Hmo < 0.8 and slightly larger than the experimental result in Rc/Hmo > 0.8. The results of this model were well represented in both the exponential curve and the power curve under impulsive wave conditions. Therefore, it was confirmed that this numerical model can simulate the wave overtopping rate caused by nonlinear irregular waves in an vertical wall structure.

Study for the Vertical Vibratioin Control Method of Railway Structure (철도구조물의 연직진동 제어기법에 관한 연구)

  • Choi, Eun-Soo;Lee, Joo-Tak;Yu, Seong-Mun;Lee, You-In
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1242-1247
    • /
    • 2011
  • This study investigates vertical vibration control method for railway structure by using vertical vibration control device. The device consists of high stiffness polyurethane spring and friction damper recognized by National Center for Earthquake Engineering Research of USA for durability. To confirm the capacity of vertical vibration control, at first, behavior equation is established by considering correlation among the components. Then, hysteresis curve is drawed from behavior equation. By considering both dynamic behaviors and material nonlinearities, more reasonable behavior of the device can be simulated. After that, the Validity of the vibration control trend is proved by FEM(Finite Element Method).

  • PDF

Angle Beam Ultrasonic Testing Models and Their Application to Identification and Sizing of Surface Breaking Vertical Cracks

  • Song, Sung-Jin;Kim, Hak-Joon;Jung, Hee-Jun;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.627-636
    • /
    • 2002
  • Identification and sizing of surface breaking vertical cracks using angle beam ultrasonic testing in practical situation quite often become very difficult tasks due to the presence of non-relevant signals caused by geometric reflectors. The present work introduces effective and systematic approaches to take care of such a difficulty by use oi angle beam ultrasonic testing models that can predict the expected signals from various targets very accurately. Specifically, the model-based TIFD (Technique for Identification of Flaw signals using Deconvolution) is Proposed for the identification of the crack tip signals from the non-relevant geometric reflection signals. In addition, the model-based Size-Amplitude Curve is introduced for the reliable sizing of surface breaking vertical cracks.

Final Settlement Prediction Methods of Embankments on Soft Clay by Back Analysis (역해석에 의한 연약지반 최종침하량 추정)

  • Lim, Seong Hun;Kang, Yea Mook;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.247-259
    • /
    • 1998
  • Analyses which loads were regarded as instant load and gradual step load were performed with data measured on gradually loaded field, and the results were inspected to find effect of load condition, and final settlements predicted by Hyperbolic, Tan's, Asaoka's, and Monden's method were compared with each other. According to above analyses, the following conclusions were obtained. Settlement curves which loads were regarded as instant load and gradual step load were beginning to coincide at time of twice duration of embankment. On the ground installed vertical drain, the result of Hyperbolic, Tan's, Asaoka's, Monden's, curve fitting I, and curve fitting II (simple, Carrillo) methods make conclude that Asaoka, curve fitting I, and curve fitting II methods agree with measured settlement.

  • PDF

MECHANICAL ANALYSIS ON THE SHAPE-MEMORY ARCH WIRE (형상기억합금 호선의 역학적 해석)

  • Lee, Jin-Hyung;Nahm, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.24 no.3 s.46
    • /
    • pp.735-758
    • /
    • 1994
  • This study was designed to investigate the displacements and reaction forces of teeth caused by the application of the rectangular shape-memory arch wires with curve of Spee. Computer-aided three dimensional finite element method was adopted. This finite element model consists of brick element for teeth, beam element for the wire, and contact element for the periodontal ligament. And the application of the MEAW(Multiloop Edgewise Arch Wire) was also studied so that the results of the two methods can be compared each other. Total number of the nodes and elements were found to be 5925 and 4031, repectively. In addition, several types of elastics and corresponding displacements and reaction forces were examined. The findings of this study were as follows: 1. When the rectangular shape-memory arch wire with curve of Sun was used alone, the intrusion and labioversion was noticeable on the upper incisors, while the upper molars showed less intrusion. With MEAW, the intrusion and labioversion of the upper incisors were slightly larger than those when the shape-memory arch wire was used, but on the upper molars the opposite result was obtained with respect to the intrusion. 2. The shape-memory arch wire with the vertical elastics caused the larger downward displacement on the upper canine than that when the MEAW was used with the vertical elastics. However, the downward displacement of the upper incisors was larger in MEAW. The uprighting and buccoversion of the molars were observed in both cases. 3. The use of the Class II or III elastics showed the extrusion and changes in torque of the corresponding teeth. The downward displacement of the upper canine was increased when the Class II and vertical elastics were applied simultaneously, but it was decreased when both of the Class III and vertical elastics were used.

  • PDF

Automatic Individual Tooth Region Separation using Accurate Tooth Curve Detection for Orthodontic Treatment Planning

  • Lee, Chan-woo;Chae, Ok-sam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.57-64
    • /
    • 2018
  • In this paper, we propose the automatic detection method for individual region separation using panorama image. Finding areas that contain individual teeth is one of the most important tasks in automating 3D models through individual tooth separation. In the conventional method, the maxillary and mandibular teeth regions are separated using a straight line or a specific CT slide, and the tooth regions are separated using a straight line in the vertical direction. In the conventional method, since the teeth are arranged in a curved shape, there is a problem that each tooth region is incorrectly detected in order to generate an accurate tooth region. This is a major obstacle to automating the creation of individual tooth models. In this study, we propose a method to find the correct tooth curve by using the jawbone curve which is very similar to the tooth curve in order to overcome the problem of finding the area containing the existing tooth. We have proposed a new method to accurately set individual tooth regions using the feature that individual teeth are arranged in a direction similar to the normal direction of the tooth alignment curve. In the proposed method, the maxillary and mandibular teeth can be more precisely separated than the conventional method, and the area including the individual teeth can be accurately set. Experiments using real dental CT images demonstrate the superiority of the proposed method.