• Title/Summary/Keyword: Vertical acceleration

Search Result 481, Processing Time 0.031 seconds

A Numerical K-e Two-Equation Model for Investigating the Hydrodynamics of Flow in Two-Dimensional Density Fields (이차원밀도장에서의 유동을 해석하기 위한 수치모델의 개발)

  • 허재영
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.61-71
    • /
    • 1993
  • To investigate the structure of internal flow hydrodynamically, the complete vertical equation of motion should be assembled into the model. In the present study a numerical simulation model not hydrodynamically approximated is established. From the comparison of the predicted results with the computed results from k-$ two equation turbulence model by Huh et. al.(1991)and the experimental data by Nakatsuji(1984), the vertical acceleration and its effects on the development of buoyant surface jets are evaluated quantitatively.

  • PDF

Characteristic Analysis of Tubular Linear Motor with Halbach and Vertical Magnetized PMs (Halbach/수직 자화 영구자석을 갖는 Tubular 모터의 특성해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Lee, Sung-Ho;Lee, Seung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.119-121
    • /
    • 2003
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration, and to increase reliability [1]. In this paper, we analyze and compare the characteristics of tubular motor with halbach and vertical magnet array respectively. We derive magnetic field solutions due to the PMs and to the currents. Motor thrust is then derived. The results are shown in good conformity with those obtained from the commonly used finite element method.

  • PDF

Evaluation of Dynamic Behavior of Rail Joints on Personal Rapid Transit Track (소형무인경전철(PRT)궤도 레일이음매의 동적거동 분석)

  • Choi, Jung-Youl;Kim, Jun-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.89-94
    • /
    • 2016
  • The objective of this study was to estimate the dynamic behavior of a personal rapid transit(PRT) track system using a rail of rectangular tube section and a rail joint of sliding type, and to compare the results with the normal rail and rail joint of a PRT track system by performing field measurements using actual vehicles running along the service lines. The measured vertical displacement of rail and sleeper, and vertical acceleration of rail for the normal rail and rail joint section were found to be similar, and the rail joint of sliding type satisfied the design specifications of the track impact factor for a conventional railway track. The experimental results showed that the overall dynamic response of the rail joint were found to be similar to or less than that of the normal rail, therefore the rail joint of sliding type for PRT track system was sufficient to ensure a stability and safety of PRT track system.

Evaluation on Allowable Vehicle Speed Based on Safety of Track and Railway Bridge (궤도 및 교량 안전성을 고려한 열차 증속가능 속도대역 평가)

  • Bahng, Eun Young
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.145-151
    • /
    • 2018
  • In this study, the track-bridge interaction analysis was performed using an analytical model considering the track structure, thereby taking into account the linear conditions (R=650 m, cant variation $160{\pm}60mm$) and the dynamic characteristics of the bridge. As a result of the study, the allowable speed on the example bridge considered was calculated at 200 km/h based on vertical deflection, vertical acceleration, and irregularity in longitudinal level, but was also evaluated at 170km/h based on the coefficient of derailment, wheel load reduction, and lateral displacement of the rail head. It is considered desirable to set the speed 170km/h to the speed limit in order to secure the safety of both the bridge and the track. It is judged that there will be no problems with ensuring rail protection and train stability in the speed band.

A REAL TIME CFD SIMULATION OF THE VERTICAL-AXIAL WIND TURBINE (전산해석을 이용한 수직축 풍력터빈의 실시간 공력해석)

  • Lee, M.S.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.147-154
    • /
    • 2010
  • The world is gradually running short of fossil fuel. Currently, the role of wind turbine is attracting great attention from all over the world. The objective of this study is to investigate blades of Vertical-axial wind turbine (VAWT) for optimum design using the CFD from the aerodynamics point of view. Because one of the performance of wind turbine depends on shape of blades, the study of comparing one gyro mill type blade and a modified one was carried out. Using the results of computation, we calculated and compared RPM for both models at same wind velocity. And we calculated angular acceleration and moment of inertia to find torque in every time-step. And the pressure contour and velocity profile around the blade were analyzed Also, this study is performed to calculate the wake effect.

  • PDF

A safety evaluation on the loading and vibration test for transport freight car of cold rolled coil sheet (냉연코일강판 수송용 화차의 안전성 평가를 위한 차체하중시험과 진동시험)

  • 김원경;정종덕;윤성철;홍용기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1499-1502
    • /
    • 2003
  • This paper describes the result of carbody and vibration test for freight car. The purpose of the test is to evaluate an safety which carbody structure shall be considered fully sufficient rigidity so as to load a freight car under maximum load and operating condition on line track. The test carbody is constructed by RS korea co., LTD. in accordance with KNR specfication. The test cases of the carbody is tested the vertical load and compressive load to verify the strength and stillness. The vibration test is tested for analysis and evaluation of vibration, to allow for the fact that mechanical vibration in railway vehicles have specific characteristics.

  • PDF

Dynamic Analysis for a Double-Rib Arch Railway Bridge Considering Real High Speed Train Loads (실 고속열차하중을 고려한 이중 리브 아치 교량의 동적해석)

  • Kang, Young-Jong;Kim, Jung-Hun;Shin, Ju-Hwan;Lee, Myeong-Sup
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1138-1142
    • /
    • 2010
  • High speed railway structure, contact of vehicle needs to design considering the running stability(dynamic behavior). Also, upper structure has to satisfy design standard about moving load, high speed train(KTX). So, the high speed railway structure has to satisfy the requirement of natural frequency, vertical acceleration on deck, face distortion and vertical displacement considering ride comfort, which is suggested Ho-nam high speed railway design standard. In this study, it was investigated and evaluated to the dynamic behavior for a double-rib arch railway bridge subjected to moving load considering real high speed train loads.

  • PDF

A study on Whole Body Vibration in Subway System (지하철 전동차에서의 전신진동 특성에 관한 연구)

  • Jeong, Sang Wook;Park, Sang Kyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.1
    • /
    • pp.87-98
    • /
    • 1997
  • In this study, subway train vibration has been measured to characterize the whole body vibration of Seoul subway lines for various human postures. Results show that the floor vibration level of the subway trains in the vertical direction is higher than that in other directions. At the standing human posture, vibration level of the head in the right-left direction are increased while that in the vertical direction is decreased. It is assumed that the different flexibility of the human body and the rolling motion of the subway trains are the main cause. At the sitting posture with back seat on, vibration level in the right and left direction at the human ischial tuberosities is lower than that in other directions. Results also show that there were little difference between back-seat on model and back-seat off model. Transmissibility analysis shows how the subway vibration affects the response of a human body.

  • PDF

On the Development of Seakeeping Performance Evaluation System with Establishing a Safety Space (안전공간 설계에 의한 선박 내박성능의 평가 시스템 개발에 관한 연구)

  • 김순갑;공길영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1992.04a
    • /
    • pp.21-43
    • /
    • 1992
  • The recently-developed automated vessels require a system which evaluates the operating condition of the ship at present position form weather information as well as sensors; forecasts the operation condition the sea state to come in foreseeable future ; and suggests the optimum course and speed for ship's sa-fety. According to a study deck wetness propeller racing slamming rolling vertical acceleration lateral acce-leartion vertical bending moment at midship etc. were chosen as the factors for evaluating seakeeping per-formance. As a mater of fact there is no developing the hardware of a system which could consider all the factors onseakeeping performance. This study introduces a theoretical method which makes it possible to evaluate the seakeeping perfor-mance byapplying a theory from reliability engineering and thereby establishing a safety space. lation of stochastic processes with the factors presently adopted for evaluating sekakeeping performance. and develops the overall eseakeeping performance evaluation system in consideration of the safety of human being cargoes and the ship This method of evaluation shall be of much use in developing the practical system of seakeeping perfor-mance of a ship in waves.

  • PDF

Experimental Study on Vertical Reduction Effectiveness of Main Control Room of NPP using 3-Dimensional Isolation System (원전 주제어실 삼차원 면진시스템 수직방향 저감효과 시험연구)

  • Ham, Kyung-Won;Lee, Kyung-Jin;Suh, Yong-Pyo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.417-423
    • /
    • 2006
  • The seismic characteristics with 3-Dimensional isolation systems have been studied using a shaking table system. In this study, we made nuclear power plant main control room floor systems and several seismic shaking table tests with and without isolation systems were conducted to evaluate floor isolation effectiveness. Isolation systems have showed large reduction effectiveness in acceleration and response spectra with x and z direction respectively, but horizontal isolation is more effective than vertical one It is required to make isolation systems of which design frequency is below 1Hz when applied to main control room of NPP, but considering much difficulties in making such isolation systems, it is recommended that much consideration should be taken into account when applied to main control room of NPP.

  • PDF