• Title/Summary/Keyword: Vertical Wind Turbine

Search Result 160, Processing Time 0.029 seconds

Basic Experiment Using Taguchi method for Vertical Wind Turbine with Wind-shield (다구찌 기법을 이용한 윈드실드 수직축 풍력 터빈의 기초 실험 연구)

  • Hong, Cheol-Hyun;Seo, Seong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.85-89
    • /
    • 2011
  • This study aimed to develop a wind turbine system for the domestic wind environments. The Taguchi method was applied to obtain the optimal design for a wind turbine with a wind-shield. The design parameters were defined to look for the shape of the wind turbine. Optimal parameters were determined on the basis of the analyzed level averages of the characteristics. According to the test results to which the optimal parameters were applied, the rpm improved. It was also found that a windshield 3/4 the size contributes to improving the efficiency of existing turbines.

Comparison of Dynamic Characteristics of a Wind and Photovoltaic Hybrid Light Pole Structure with 2-bladed and 3-bladed Vertical Axis Turbine Rotors Using Vibration Measurement under Normal Operation Conditions (2엽 및 3엽 수직축 풍력-태양광 하이브리드 가로등의 발전 중 진동계측을 통한 동적 특성 비교)

  • Yi, Jin-Hak;Park, Sangmin;Yim, Sungyul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.118-125
    • /
    • 2019
  • In this study, the vibration characteristics and the resonance phenomena of a wind-solar hybrid light pole structure are compared with respect to the wind turbine type through the dynamic response measurement. Two different turbines are considered including 2-bladed and 3-bladed vertical axis wind turbine rotors. The resonance phenomenon that can occur in hybrid light pole structure is analyzed by comparing the dynamic characteristics of the structure and the excitation force under operational conditions. Displacement responses are also estimated using the acceleration measurement data by use of recently proposed method, and it is observed that the amplitude of dynamic displacement responses are in the range of 4-6 cm under the resonance in the case of 2-bladed turbine and those are limited under 2 mm in the case of 3-bladed turbine because there is no resonance.

A Study on Vibration Isolation Technique of Building-augmented Wind Turbine (건물일체형 풍력발전기의 진동저감 기법 연구)

  • Lee, Jong Won;Moon, Seok-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.160-168
    • /
    • 2015
  • Vibration issue of a building structure due to a wind turbine should be resolved for the application of building-augmented wind turbine. In this study, a dynamic analysis for an horizontal-axis upwind wind turbine is carried out to calculate vibration excited to an example building structure. Characteristics of vertical vibration transfer of the building structure are analytically studied and compared with a criteria. Then, a method to isolate the vibration is presented by analyzing the vibration characteristics of the wind turbine, and verified by applying to the building structure.

Dual Rotor Wind Turbine System (수직/수평축 통합형 풍력발전 시스템)

  • Shinn, Chan;Kim, Ji-Ern;Song, Seung-Ho;Rho, Do-Hwan;Kim, Dong-Yong;Jung, Sung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.289-292
    • /
    • 2001
  • A Dual rotor turbines HAWT/VAWT combined wind turbine system that can drastically enhance the power production capability compared to conventional Single Rotor Turbine HAWT system. The combined system that takes advantage of strong point of both horizontal and vertical Axis wind turbine system developed by a venture firm : KOWINTEC of Chonbuk National University. The HAWT/VAWT hybrid system has been successfully field tested and commercial operation since Feb. 12, 2001 in Hae-chang rest park, Bu-an county near the Sae Man-Kum Sea Dike. This paper will briefly describe the field test results performance and a special aerodynamic structure with bevel-planetary gear box of Dual Rotor Wind Turbine system.

  • PDF

Structure Design and Experimental Appraisal of the Drag Force Type Vertical Axis Wind Turbine (수직축 항력식 풍력터빈의 구조설계 및 실험평가)

  • Kim Dong-Keon;Keum Jong-Yoon;Yoon Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.278-286
    • /
    • 2006
  • Experiments were conducted to estimate the performance of drag force type vertical axis wind turbine with an opening-shutting rotor. It was operated by the difference in drag force generated on both sides of the blades. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was measured by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller. Various design parameters, such as the number of blades(B), blade aspect ratio(W/R), angle of blades$(\alpha)$ and drag coefficient acting on a blade, were considered for optimal conditions. At the experiment of miniature model, maximum efficiency was found at N=15, $\alpha=60^{\circ}$ and W/R=0.32. The measured test variables were power, torque, rotational speed, and wind speeds. The data presented are in the form of power and torque coefficients as a function of tip-speed ratio V/U. Maximum power was found in case of $\Omega=0.33$, when the power and torque coefficient were 0.14 and 0.37 respectively. Comparing model test with prototype test, similarity law by advance ratio for vertical axis wind turbine was confirmed.

Dynamic Response Measurements and Analysis on a 10 kW Class Vertical Axis Wind Turbine (10 kW급 수직축 풍력터빈에 대한 구조물 동적응답 계측 및 분석)

  • Yi, Jin-Hak;Kim, Wonsul;Han, Taek Hee;Yim, Sungyul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.1
    • /
    • pp.107-113
    • /
    • 2017
  • The dynamic characteristics including natural frequencies and excitation frequencies are evaluated for a small 10 kW vertical axis wind turbine. Acceleration responses were measured at 12 distributed locations for impact vibration tests, ambient vibration tests during non-operational and operational conditions, and braking tests during operational condition. The natural frequencies for the lowest 2 bending modes and the first torsional mode were estimated and also the excitation frequencies, i.e. 1P, 2P, 4P, were also estimated according to the rotational speed using the responses under operational conditions (i.e. power generation condition).

AERODYNAMIC ANALYSIS AND COMPARISON OF EXPERIMENTAL DATA FOR 2-BLADED VERTICAL AXIS WIND TURBINE (2엽형 수직축 풍력발전기의 유동해석 및 실험 비교)

  • Hwang, M.H.;Kim, D.H.;Lee, J.W.;Oh, M.W.;Kim, M.H.;Ryu, G.J.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, aerodynamic analyses based on unsteady computational fluid dynamics (CFD) have been conducted for a 2-bladed vertical-axis wind turbine (VAWT) configuration. Reynolds-averaged Navier-Stokes equations with standard $k-{\varepsilon}$ and SST $k-{\varepsilon}$ turbulence models are solved for unsteady flow problems. The experiment model of 2-bladed VAWT has been designed and tested in this study. Aerodynamic experiment of the present VAWT model are effectively conducted using the vehicle mounted testing system. The comparison result between the experiment and the computational fluid dynamics (CFD) analysis are presented in order to verify the accuracy of CFD modeling with different turbulent models.

Operational Vibration Experiment and Analysis of a Small Vertical-Axis Wind Turbine Considering the Effect of a Tower Stiffness (타워강성 효과를 고려한 소형 수직축 풍력발전기 운전 진동실험 및 해석)

  • Choo, Heon-Ho;Sim, Jae-Park;Oh, Min-Woo;Kim, Dong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, operational vibration experiment and analysis have been conducted for the 4-blade small vertical-axis wind turbine (VAWT) including the effect of tower elastic behavior. Computational structural dynamics analysis method is applied to obtain Campbell diagram for the VAWT with elastic tower. An open type wind-tunnel is used to change and keep the wind velocity during the ground test. Equivalent elastic tower is used to support the VAWT so that the effect of elastic stiffness of the tower can be considered in the present vibration experiment. Various excitation conditions with wind loads are considered and the dominant operating vibration phenomena are physically investigated in detail.

Characteristics on the chord length and cutting ratio of rear side blade for the offshore vertical axis wind turbine (날개 길이 및 후면부 절개 비율에 따른 해상용 수직축 풍력발전기 특성 평가)

  • Kim, Namhun;Kim, Kyenogsoo;Yoon, Yangil;Oh, Jinseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.64.2-64.2
    • /
    • 2011
  • 해상용(offshore) 부이(bouy)는 선박의 항로를 지시하거나 암초, 침몰선 등 항해상의 위험물을 알리기 위해 사용 되며, 야간을 위해 등화장치를 설치한 것을 등부표라 한다. 등부표는 야간 점등을 위해 자체 전력 생산시스템을 갖추고 있으나, 기존의 태양광을 이용한 전력 시스템은 해상 환경에 따른 제약이 많아 안정적인 운영이 어려우므로 풍력 발전기(wind turbine)를 이용한 하이브리드 전력 생산시스템으로의 전환이 필요한 실정이다. 선행 연구는 수직축(vertical axis) 양력(lift) 및 항력(drag) 조합형 해상용 풍력발전기 개발에 대하여 수행하였으나, 본 논문에서는 풍력발전기의 효율 증대를 위해 날개 길이 및 후면부 절개 비율에 따른 수직축 풍력발전기 특성에 대하여 연구하였다. 풍력발전기의 설치조건은 선행연구와 동일하게 등명구 교체 작업을 원활하게 하기 위하여 설치 공간을 $1m{\times}1m$로 제한하였으며, 등부표의 구조를 고려하여 최상단에 지지 프레임을 별도로 구성 하였다. 풍력발전기의 블레이드는 0.6mm의 알루미늄 박판을 절곡하여 NACA 4418의 외형을 가지도록 제작하였고, 블레이드 설계 시 에어포일의 후면부를 절개하여 양력과 항력을 효과적으로 이용하며 저속과 고속에서 높은 효율을 가지도록 설계하였다. 또한 블레이드 날개 길이와 후면부 절개 비율에 따른 풍력발전기 특성을 실험을 통해 비교하여 기준 해상 풍속에서 블레이드 설계 최적화를 수행하였으며 비교 모델 대비 약32% 발전량이 증가한 설계변수 조합을 구하였다.

  • PDF

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (II): with and without Vertical Wind Shear Effect (수평축 풍력터빈의 공력 하중 비교 (II): 수직 전단흐름 효과의 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.399-406
    • /
    • 2016
  • The large scale wind turbine blades usually experience periodic change of inflow speed due to blade rotation inside the ground shear flow region. Because of the vertical wind shear, the inflow velocity in the boundary layer region is maximum at uppermost position and minimum at lowermost position. These spatial distribution of wind speeds can lead to the periodic oscillation of the 6-component loads at hub and low speed shaft of the wind turbine rotor. In this study we compare the aerodynamic loads between two inflow conditions, i.e, uniform flow (no vertical wind shear effect) and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially bending moment and thrust at hub, and bending moments at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue analysis.