• 제목/요약/키워드: Vertical Transmission

Search Result 318, Processing Time 0.026 seconds

Multi-Slice Joint Task Offloading and Resource Allocation Scheme for Massive MIMO Enabled Network

  • Yin Ren;Aihuang Guo;Chunlin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.794-815
    • /
    • 2023
  • The rapid development of mobile communication not only has made the industry gradually diversified, but also has enhanced the service quality requirements of users. In this regard, it is imperative to consider jointly network slicing and mobile edge computing. The former mainly ensures the requirements of varied vertical services preferably, and the latter solves the conflict between the user's own energy and harsh latency. At present, the integration of the two faces many challenges and need to carry out at different levels. The main target of the paper is to minimize the energy consumption of the system, and introduce a multi-slice joint task offloading and resource allocation scheme for massive multiple input multiple output enabled heterogeneous networks. The problem is formulated by collaborative optimizing offloading ratios, user association, transmission power and resource slicing, while being limited by the dissimilar latency and rate of multi-slice. To solve it, assign the optimal problem to two sub-problems of offloading decision and resource allocation, then solve them separately by exploiting the alternative optimization technique and Karush-Kuhn-Tucker conditions. Finally, a novel slices task offloading and resource allocation algorithm is proposed to get the offloading and resource allocation strategies. Numerous simulation results manifest that the proposed scheme has certain feasibility and effectiveness, and its performance is better than the other baseline scheme.

IoT data analytics architecture for smart healthcare using RFID and WSN

  • Ogur, Nur Banu;Al-Hubaishi, Mohammed;Ceken, Celal
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.135-146
    • /
    • 2022
  • The importance of big data analytics has become apparent with the increasing volume of data on the Internet. The amount of data will increase even more with the widespread use of Internet of Things (IoT). One of the most important application areas of the IoT is healthcare. This study introduces new real-time data analytics architecture for an IoT-based smart healthcare system, which consists of a wireless sensor network and a radio-frequency identification technology in a vertical domain. The proposed platform also includes high-performance data analytics tools, such as Kafka, Spark, MongoDB, and NodeJS, in a horizontal domain. To investigate the performance of the system developed, a diagnosis of Wolff-Parkinson-White syndrome by logistic regression is discussed. The results show that the proposed IoT data analytics system can successfully process health data in real-time with an accuracy rate of 95% and it can handle large volumes of data. The developed system also communicates with a riverbed modeler using Transmission Control Protocol (TCP) to model any IoT-enabling technology. Therefore, the proposed architecture can be used as a time-saving experimental environment for any IoT-based system.

The Characteristics of Phase Variation by Depth of Water Column and the Correlation between Channels of Vertical Array Receiver at East Sea (동해 천해환경에서 수심에 따라 변화하는 위상 변동의 특성과 상관관계 분석)

  • Choi, Dong-Hyun;Kim, Hyeon-Su;Kim, Nam-Ri;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.165-172
    • /
    • 2010
  • It is important to determine the communicational method that knows the characteristic of phase variation along transducers formed array within the water column in actual underwater environment and the correlation between transducers. This paper analyzes the characteristic of phase variation that vary on different locations by probe signals that transmitted from a probe source and received along transducers. This paper calculated the theoretical transmission capacities by the analyzation of the correlation between transducers through changing the distance between transducers and the distance between a probe source and transducers.

Investigation of the Effective Range of Cathodic Protection for Concrete Pile Specimens Utilizing Zinc Mesh Anode

  • Duhyeong Lee;Jin-A Jeong
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.195-202
    • /
    • 2024
  • A zinc mesh sacrificial anode cathodic protection method is recently being developed to protect the reinforced concrete structure in a marine environment. However, comprehensive information regarding the cathodic protection technology applied to reinforced concrete test specimens utilizing zinc mesh sacrificial anodes remains limited. Particularly, no research has investigated the effective range of sacrificial anode cathodic protection in a reinforced concrete structure regarding the transmission of protection current from zinc mesh sacrificial anode to the reinforced concrete structure, particularly concerning effects of temperature variations. This study examined the distribution of potential and current using a long single rebar and several segment reinforcing bars inside a horizontal beam. Vertical pile specimens were applied with a zinc mesh sacrificial anode to simulate concrete bridges or harbor structures. To check the effect of cathodic protection, cathodic protection potential and current of the reinforced concrete specimens were measured and 100 mV depolarization criterion test was performed. It was confirmed that effect of cathodic protection varied depending on resistivity and temperature. The cathodic protection test of pile specimens revealed that the maximum reachable range of cathodic protection current was 10 cm from the waterline as observed in the experiment.

Evaluating Laser Beam Parameters for Ground-to-space Propagation through Atmospheric Turbulence at the Geochang SLR Observatory

  • Ji Hyun Pak;Ji Yong Joo;Jun Ho Lee;Ji In Kim;Soo Hyung Cho;Ki Soo Park;Eui Seung Son
    • Current Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.382-390
    • /
    • 2024
  • Laser propagation through atmospheric disturbances is vital for applications such as laser optical communication, satellite laser ranging (SLR), laser guide stars (LGS) for adaptive optics (AO), and laser energy transmission systems. Beam degradation, including energy loss and pointing errors caused by atmospheric turbulence, requires thorough numerical analysis. This paper investigates the impact of laser beam parameters on ground-to-space laser propagation up to an altitude of 100 km using vertical atmospheric disturbance profiles from the Geochang SLR Observatory in South Korea. The analysis is confined to 100 km since sodium LGS forms at this altitude, and beyond this point, beam propagation can be considered free space due to the absence of optical disturbances. Focusing on a 100-watt class laser, this study examines parameters such as laser wavelengths, beam size (diameter), beam jitter, and beam quality (M2). Findings reveal that jitter, with an influence exceeding 70%, is the most critical parameter for long-exposure radius and pointing error. Conversely, M2, with an influence over 45%, is most significant for short-exposure radius and scintillation.

SDN-COR: An Efficient Network Coding Opportunistic Routing Method for Software-Defined Wireless Sensor Networks

  • Yifan Hu;Xiqiang Hou;Fuqiang Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1795-1816
    • /
    • 2024
  • A Software-Defined Wireless Sensor Networks (SDWSNs) architecture is firstly proposed to address the issues of inflexible architecture strategies and low scalability of traditional WSNs in this article. The SDWSNs architecture involves the design of a software-defined sensor network model and a customized controller architecture, along with an analysis of the functionalities of each management module within the controller architecture. Secondly, to tackle limited energy problem of sensor nodes, a network coding opportunistic routing method (SDN-COR) is presented based on SDWSNs. This method incorporates considerations of coding opportunities, vertical distance, and remaining energy of nodes to design a metric for encoding opportunistic routing. By combining opportunistic forwarding mechanisms, candidate forwarding sets are selected and sorted based on priority to prioritize data transmission by higher-priority nodes. Simulation results indicate that, comparing with conventional methods, this approach achieves reduction in energy consumption by an average of 21.5%, improves network throughput by 24%, and extends network lifetime by 20%.

Evolution of pullout behavior of geocell embedded in sandy soil

  • Yang Zhao;Zheng Lu;Jie Liu;Jingbo Zhang;Chuxuan Tang;Hailin Yao
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • This paper aims to explore the evolution of the pullout behavior of geocell reinforcement insights from three-dimensional numerical studies. Initially, a developed model was validated with the model test results. The horizontal displacement of geocells and infill sand and the passive resistance transmission in the geocell layer were analyzed deeply to explore the evolution of geocell pullout behavior. The results reveal that the pullout behavior of geocell reinforcement is the pattern of progressive deformation. The geocell pockets are gradually mobilized to resist the pullout force. The vertical walls provide passive pressure, which is the main contributor to the pullout force. Hence, even if the frontal displacement (FD) is up to 90m mm, only half of the pockets are mobilized. Furthermore, the parametric studies, orthogonal analysis, and the building of the predicted model were also carried out to quantitative the geocell pullout behavior. The weights of influencing factors were ranked. Ones can calculate the pullout force accurately by inputting the aspect ratio, geocell modulus, embedded length, frontal displacement, and normal stress.

Crossbreeding and parental lineage influences the diversity and community structure of rice seed endophytes

  • Walitang, Denver I.;Halim, MD Abdul;Kang, Yeongyeong;Kim, Yongheon;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.161-161
    • /
    • 2017
  • Seed endophytes are very remarkable groups of bacteria for their unique abilities of being vertically transmitted and conserved. As plants attain hybrid vigor and heterosis in the process of crossbreeding, this might also lead to the changes in the community structure and diversity of plant endophytes in the hybrid plants ultimately affecting the endophytes of the seeds. It would be interesting to characterize how seed endophyte composition change over time. The objective of this study is to gain insights into the influence of natural crossbreeding and parental lineage in the seed bacterial endophytic communities of two pure inbred lines exploring contributions of the two most important sources of plant endophytes - colonization from external sources and vertical transmission via seeds. Total genomic DNA was isolated from rice seeds and bacterial DNA was selectively amplified by PCR. The diversity of endophytic bacteria was studied through Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Diversity between the original parents and the pure inbred line may show significant differences in terms of richness, evenness and diversity indices. Heat maps reveal astonishing contributions of both or either parents (IR29 ${\times}$ Pokkali and AT401 ${\times}$ IR31868) in the shaping of the bacterial seed endophytes of the hybrid, FL478 and IC32, respectively. Most of the T-RFs of the subsequent pure inbred line could be traced to any or both of the parents. Comparison of common and genotype-specific T-RFs of parents and their offspring reveals that majority of the T-RFs are shared suggesting higher transmission of bacterial communities common to both parents. The parents influence the bacterial community of their offspring. Unique T-RFs of the offspring also suggest external sources of colonization particularly as the seeds are cultivated in different ecogeographical locations. This study showed that host parental lines contributed greatly in the shaping of bacterial seed endophytes of their offspring. It also revealed transmission and potential conservation of core seed bacterial endophytes that generally become the dominant microbiota in the succeeding generations of plant hosts.

  • PDF

Simulation of Temporal Variation of Acoustic Transmission Loss by Internal Tide in the Southern Sea of Jeju Island in Summer (여름철 제주 남부해역에서 내부 조석에 의한 음파 전달손실의 시간적 변화 모의실험)

  • Kim, Juho;Kim, Hansoo;Paeng, Dong-Guk;Pang, Ig-Chan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.12-19
    • /
    • 2015
  • In this paper, temporal variations of acoustic transmission loss (TL) affected by internal tide are studied by computer simulation using oceanic data measured in the southern sea of Jeju Island in summer. Temperature was measured with depth (bottom depth are nearly 80 m) in two sites near Seogwipo coast every one hour for 25 hours during July 27 and 28, 2009. The periodic fluctuation of temperature due to the internal tide was observed and its vertical displacement was more than 10 m. In order to investigate temporal variation of TL by internal tide, acoustic propagation between two measurement sites (3.8 km distance) was simulated with a source depth of 10 m. TL variation for 1/3 octave band of 100 Hz center frequency highly coincided with tidal period but more complex variation with indistinct tidal period was observed for 1 kHz. Maximun standard deviation of TL variation was 4.2 dB for 100 Hz at 2.8 km distance from a source and it was 3.7 dB for 1 kHz. The tidal variation was also shown in detection range and its maximum variance was less than 1 km. These results imply that temporal variation of TL should be considered for acoustic researches at the southern sea of Jeju Island.

Development of A Network loading model for Dynamic traffic Assignment (동적 통행배정모형을 위한 교통류 부하모형의 개발)

  • 임강원
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.149-158
    • /
    • 2002
  • For the purpose of preciously describing real time traffic pattern in urban road network, dynamic network loading(DNL) models able to simulate traffic behavior are required. A number of different methods are available, including macroscopic, microscopic dynamic network models, as well as analytical model. Equivalency minimization problem and Variation inequality problem are the analytical models, which include explicit mathematical travel cost function for describing traffic behaviors on the network. While microscopic simulation models move vehicles according to behavioral car-following and cell-transmission. However, DNL models embedding such travel time function have some limitations ; analytical model has lacking of describing traffic characteristics such as relations between flow and speed, between speed and density Microscopic simulation models are the most detailed and realistic, but they are difficult to calibrate and may not be the most practical tools for large-scale networks. To cope with such problems, this paper develops a new DNL model appropriate for dynamic traffic assignment(DTA), The model is combined with vertical queue model representing vehicles as vertical queues at the end of links. In order to compare and to assess the model, we use a contrived example network. From the numerical results, we found that the DNL model presented in the paper were able to describe traffic characteristics with reasonable amount of computing time. The model also showed good relationship between travel time and traffic flow and expressed the feature of backward turn at near capacity.