• Title/Summary/Keyword: Vertical Pump

Search Result 195, Processing Time 0.043 seconds

Cooling and Heating Energy Performance and Cost Analysis of Vertical Closed-loop Geothermal Heat Pump Coupled with Heat Storage Tank Compared to Conventional HVAC System (일반공조 시스템 대비 축열조와 연동된 수직밀폐형 지열히트펌프의 냉난방 에너지 성능 및 경제성 분석)

  • Kim, Min-Ji;Do, Sung-Lok;Choi, Jong-Min;Lee, Kwang Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.81-87
    • /
    • 2018
  • Among various types of geothermal heat pump systems, Vertical Closed-Loop Geothermal Heat Pump (VGSHP) has received increasing attention due to a variety of advantages such as the potential to be installed in a relatively small space and improved energy efficiency. In this research, the performance of VGSHP system coupled with heat storage tank was evaluated, by analyzing operational behavior of heat storage tank, the variations of heat pump energy performance due to the connection with heat storage tank, part load ratios characteristics of heat pump and the corresponding energy cost, compared to chiller and boiler based conventional system. The results of this study showed that the VGSHP system coupled with heat storage tank showed an energy saving effect of about 18% for cooling and about 73% for heating, and annual heating/cooling energy cost reduction of 43,000,000 KRW ($ 39,000), compared to the conventional air conditioning system. In addition, after considering both energy cost and initial investment cost including equipment, installation and auxiliary device expenses, payback period of approximately 11.8 years was required.

A Study on Dynamic Analysis of Vertical Mixed-Flow Pump for Nuclear Power Plants (원자력 발전소용 입형 사류펌프의 동적해석에 관한 연구)

  • Seo, Y.S.;Lim, W.S.;Chung, H.T.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.71-77
    • /
    • 2006
  • This study introduces the seismic qualification of safety related equipments for nuclear power plants to verify the possibility of resonance in regard to the operating speed and the structural integrity due to external piping nozzle loads as well as seismic dynamic loads using El-Centro earthquake, which was occurred in the 1940's previously. As a first step, it is necessary to investigate the natural frequency of the vertical mixed flow pump in order to determine whether static or dynamic equipment comparing with seismic cut-off frequency, 33hz. Also the normal mode analysis was carried out with the introduction of seismic redesign straint at the middle of vertical pump to increase the natural frequency. In terms of structural integrity, the application of static analysis with normal, upset and faulted nozzle loads event was presented for the comparison of material allowable stress. Also the dynamic analysis was performed to show the design adequacy through the application to the case of El-Centro earthquake.

  • PDF

Free Vibration of Vertica Pomp (대형수직펌프의 자유진동해석)

  • 배춘희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.267-272
    • /
    • 2004
  • Vertical pump are widely used owing to the fact that they occupy small floor space. In this type of pumps, however, the vibrational problems are very important, since, in many cases, they have less stiffness in comparison with later pumps. This study presents a simple solution method for calculating the natural frequencies and modes of vertical pumps. In this study, a model of a vertical pump was developed and the nondimensional parameters for the vibrational characteristics of it were determined. Added mass was calculated for the effects of water and the transfer matrix method was used.

  • PDF

Modal Analysis In The Dynamic Behavior Identification of the fluid-structure coupled Vertical Pump (유체와 구조물이 조합된 대형 수직펌프의 동특성 개선)

  • 배춘희;조철환;김성휘;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.622-627
    • /
    • 2001
  • The paper presents the possibilities of a wide practical application of the modal analysis methods in dynamic testing of vertical pump. A pneumatic impact of testing vertical pumps submerged under deep water was developed and successfully applied. The problem with the enviroment is the it causes significants changes in modal parameters, compared with those in the airenviroment.

  • PDF

A Study on Vibration of Vertical Pump (수직펌프의 진동 연구)

  • Kim, Yeon-Whan;Kim, Hee-Soo;Lee, Jun-Shin;Bae, Yong-Chae;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.58-63
    • /
    • 1997
  • The natural frequencies of the support system for a vertical pump, which are a key factor affecting the dynamic stability of the pump support system, are not easily predictable with analytical approaches only, due to the difficulties estimating the effective stiffness of the connections between the concrete base, the motor structure, the discharge elbow and the suction column of the pump system. This paper presents the results of a finite element analysis and an experimental study performed to identify and modify the characteristics of the pumping structure. The difficulties of modelling the effective stiffness were overcome by utilizing experimental results in the analysis. Based on analytical and experimental results, appropriate structural modifications are taken to reduce excessive vibration of the pump system to a satisfactory level.

  • PDF

Heating Performance Analysis of Ground-Source Heat Pump (GSHP) System using Hybrid Ground Heat Exchanger (HGHE) (하이브리드 지중열교환기 적용 지열 히트펌프 시스템의 난방 성능 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • This paper presents the heating performance analysis results of a ground-source heat pump (GSHP) system using hybrid ground heat exchanger (HGHE). In this paper, the HGHE refers to the ground heat exchanger (GHE) using both a surface water heat exchanger (SWHE) and a vertical GHE. In order to evaluate the system performance, we installed monitoring sensors for measuring temperatures and power consumption, and then measured operation data with 4 different load burdened ratios of the HGHE. During the entire measurement period, the average heating capacity of the heat pump was 37.3 kW. In addition, the compressor of the heat pump consumed 9.4 kW of power, while the circulating pump of the HGHE used 6.7 kW of power. Therefore, the average heating coefficient of performance (COP) for the heat pump unit was 4.0, while the system including the circulating pump was 2.7. Finally, the parallel use of SWHE and VGHE was beneficial to the system performance; however, further researches are needed to optimize the design data for various load ratios of the HGHE.

Dynamic response analysis of vertical pumps (입형펌프의 동적 응답해석)

  • 양보석;김원철;임우섭;권명래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.362-372
    • /
    • 1989
  • It is important in design of vertical pumps to consider external excitation in addition to rotor vibration due to unbalance. In this study, a model of a vertical pump was developed for the analysis of its dynamic response. The vertical pump was modeled with lumped masses and springs which represent multi-cylindrical and rotor structure. A dynamic simulation program was developed and numerical calculation on the above mentioned problems were carried out.

A Case Study on High Vibration in a Condensate Pump for Combined Cycle Power Plants (복합 화력 Condensate Pump 의 고진동 사례 분석 및 대책)

  • 최성필;류석주;하현천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.510-513
    • /
    • 2001
  • Several kinds of vibration problems have been frequently encountered in industrial vertical pumps in spite of their widespread use for long time. In fact, vibration problems of the vertical pumps are so complicated and difficult with compared to those of the horizontally mounted pumps that more careful attention should be taken for solving the vibration problems. This paper introduces a case study experienced from troubleshooting for excessive vibration occurred in a vertical-type condensate pump for combined cycle power plants. Subsynchronous whirl vibration was caused by the instability of the guide bearing whose lubricant is water. A newly modified guide bearing has solved the vibration problem, which should be the best countermeasure.

  • PDF

Effect of Vertical Clearance Between a Rotor and Stater of a Disk-Type Drag Pump on the Performance (원판형 드래그펌프 회전자와 고정자 사이의 간극이 성능에 미치는 영향)

  • Kwon, Myoung-Keun;Hwang, Young-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1501-1510
    • /
    • 2004
  • The pumping characteristics of a single-stage disk-type drag pump (DTDP) are calculated for the variation of the vertical clearance between a rotor and stator by the three-dimensional direct simulation Monte Carlo (DSMC) method. The gas flow mainly belongs to the molecular transition flow region. Spiral channels of a DTDP are cut on the both the upper and lower sides of a rotating disk, but a stationary disk is planar. The interaction between molecules is described by the variable hard-sphere model. The no time counter method is used as a collision sampling technique. The vertical clearance has a significant effect on the pumping performance. Experiments are performed under the outlet pressure range of 0.4∼533 Pa. When the numerical results are compared with the experimental data, the numerical results agree well quantitatively

Fluid-Structure Interaction (FSI) Modal Analysis to Avoid Resonance of Cylinder Type Vertical Pump at Power Plant (원통형 수직 펌프의 공진회피를 위한 접수진동해석)

  • Lee, Jae-Hwan;Wang, Ji-Teng;Maring, Kothilngam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.321-329
    • /
    • 2018
  • Resonance phenomena occurs at large vertical pump which is operating to cool down the hot steam using sea water in the power plant. To avoid the resonance, the natural frequency needs to be isolated about 20% from motor operating speed. Yet, excessive vibration occurs especially at low tide. At first, natural frequency of the whole pump system and each part is calculated using ANSYS. As it is revealed in the previous journal papers that only circular pipe part is related to resonance, the FSI technique is applied for free vibration analysis. The natural frequency is reduced to 60% (compared to that) of the frequency measured in air as it is similar to other published results. And the frequency obtained by finite element analysis is almost same to that obtained from modal test. Based on the accurate finite element model and analysis, design change is tried to avoid the resonance by changing the thickness of pipe and base supporting plate. In stead of doing optimization process, design sensitivity is computed and used to find such designs to avoid resonance.