• Title/Summary/Keyword: Vertical Pump

Search Result 195, Processing Time 0.027 seconds

A Numerical Analysis on Flow Characteristics of Vertical Multi-stage Centrifugal Pump (입형 다단 원심펌프 유동특성에 관한 수치해석)

  • Mo J. O.;Kang S. J.;Song K. T.;Kim S. D.;Lee Y. H.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.589-592
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pump including impeller of centrifugal pump with 6 blades and guide vain with 11 blades. The numerical analysis of vertical multi-stage centrifugal pump is performed by changing flow rate from $8\;to\;26\;m^{3}/h$ at the constant 3500rpm. The characteristics such as total pressure coefficient, total head, water horse power, power efficiency are represented according to flow rate changing. In the future, we will need to perform flow calculation of vertical multi-stage centrifugal pump by considering meridional shape of impeller.

  • PDF

Vibration Reduction By Dynamic Absorber of Vertical Pump System (동흡진기를 통한 수직펌프의 진동 저감)

  • 배춘희;조철환;양경현;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.628-632
    • /
    • 2001
  • In this paper, Firstly, it is shown that the bending mode vibration source of vertical pump system is comparatively large because resonance. Secondly in order to the bending mode vibration of vertical pump some practical dynamic absorber have been developed and its effectiveness is investigated as installing it at the vertical pump system practically.

  • PDF

Resonance avoidance and Safety Evaluation of Vertical Pump (입형펌프의 공진회피와 안전성 평가)

  • Jeong, Wooyoung;Song, Jindae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.698-702
    • /
    • 2013
  • This paper considers the vertical pumps resonance and soundness. Normally large vertical pump's rotating speed is low, so the low natural mode can make a resonance on the motor and motor stand assembly. The pump resonance makes a very high vibration and trouble on the pump systems. Thus to avoid pump resonance when the pump is on the resonance region, we give the added mass method and evaluate the structure soundness by computer simulation and test on the site. Furthermore we evaluate the modal sensitivity and expect running conditions by the using ISO10814.

  • PDF

Evaluation of the Annual Performance of the Direct Expansion Vertical Closed-Loop Ground Source Heat Pump (직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가)

  • Kim, Min-Sung;Woo, Joung-Son;Baik, Young-Jin;Jang, Jea-Chul;Kim, Ji-Young;Ra, Ho-Sang
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.534-542
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed-loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As a result, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.

  • PDF

Annual Performance Evaluation of Direct Expansion Vertical Closed-Loop Ground Source Heat Pump for Residential Application (주거용 직접순환식 수직밀폐형 지열원 열펌프의 연간 운전성능 평가)

  • Kim, Min-Sung;Baik, Young-Jin;Ra, Ho-Sang
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.114-122
    • /
    • 2012
  • Vertical closed-loop ground source heat pump systems(GSHP) have been installed widely in Korea since it can extract moderate temperature level of geothermal heat in a small area. As a ground heat exchanger, a vertical closed -loop type with brine circulation is mostly preferred since it is simple and less harmful to ground environment. However, it requires a secondary heat exchange loop between the refrigerant in a heat pump and the brine. By adding a geothermal heat exchanger in the secondary heat exchange loop, circulation pumps should be attached and the temperature difference between refrigerant and ground is increased, which are important parts of performance degradation. In this paper, annual and seasonal performances of direct expansion(DX) geothermal heat pump were estimated mathematically as an alternative of classical indirect geothermal heat pump based on the annual performance evaluation. As results, DX geothermal heat pump showed 43% higher annual performance than the classical U-tube geothermal heat pump.

Development of Vertical Barrel Type Multistage Pump (비속도 150급 수직배럴형 다단 원심펌프 개발)

  • Yoo, Il-Su;Park, Mu-Ryong;Hwang, Soon-Chan;Kim, Sung-Ki;Yoon, Eui-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • A vertical-axis multistage pump with low specific speed was developed, satisfying performance requirements such as flow rate, total head, and NPSH. The developed pump was designed through conceptual design, configuration design, and performance analysis by CFD which were established in KIMM. The prototype pump's mechanical wholesomeness besides hydraulic performances were verified by running test, performance test, and reliability test.

A Study of NPSH Required Performance Improvement for a Industrial Vertical Pump (산업용 수직펌프의 흡입성능 향상 연구)

  • Chung, Kyung-Nam;Park, Jong-Hwoo;Kim, Yong-Kyun;Kim, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.909-915
    • /
    • 2009
  • In this paper, a study of performance improvement for a centrifugal vertical pump having specific speed of 330 is introduced. The existing model has high efficiency but needs better NPSH required performance. Such that new pump model is designed to obtain larger suction specific speed. 6 design parameters considered to affect pump performance are selected for impeller design. Key design parameters are investigated using by design of experiments and CFD, and impeller inlet diameter is increased to get better suction performance. The amount of inlet diameter increase is determined by using cavitation analysis. The results show that new design model has higher efficiency and better NPSH required performance than the existing model.

Rotordynamic Transient Analysis of Vertical Sea Water Lift Pump for FPSO Deep Well (FPSO 심정용 수직 해수펌프의 로터다이나믹 과도해석)

  • Kim, Byung-Ok;Yang, Sung-Jin;Lee, Myung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.69-74
    • /
    • 2011
  • This paper deals with the detail rotordynamic analysis for the vertical rotor system as development of vertical sea water lift pump for FPSO deep well. In a vertical rotor system, since linearized stiffness and damping coefficients of fluid film bearing are no longer be valid, hence the transient response analysis considering a fluid film force for every journal position in the bearing needs to be required. In this study, the transient response analysis of the proposed vertical pump rotor system was carried out in dry-run and wet-run conditions, respectively. The results show that orbital vibration responses of the rotor system remain stable at rated speed and thereby operating reliability of the vertical rotor system is confirmed. To overcome complexity of calculation pr ocedure and time consuming calculation of transient analysis, the calculating technique of steady-state response analysis is also proposed. The results of steady-state response obtained by applying the proposed technique to the rotor system are good agreement with the reference results, that is, transient responses.

Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System (물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구)

  • Hong, Boo-Pyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

Performance Analysis of the Vertical Multi-stage Centrifugal Pump using Commercial CFD Code (상용 CFD코드를 이용한 입형 다단 원심펌프 성능해석)

  • MO Jang-Oh;KANG Shin-Jeong;SONG Geun-Taek,;NAM Cheong-Do;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.150-155
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pump including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is not only to confirm how much the effect of three kinds of blade inlet breadth (11mm, 11.5mm, 12mm) of impeller has influence on the performance of vertical multi-stage pump but also to make clear the cause about performance difference at the exit side of impeller and guide vane. The vertical multi-stage pump consisit of the impeller, guide, vane and cylinder. The grid of numerical analysis used to the vertical multi-stage pump is 18,000, 45,000, and 100000 cells in case of the impeller, guide vane, cylinder and total grid is 730,000 cells. The characteristics such as total pressure coefficient, total head, shaft horse power, power efficiency at the exit side of impeller and guide vane, discharge coefficient are represented according to flow rage changing.

  • PDF