• 제목/요약/키워드: Vertical Machining Center

검색결과 48건 처리시간 0.036초

드릴에 의한 유리섬유강화플라스틱의 절삭특성에 관한 연구 (A Study on the Cutting Characteristics of the Glass Fiber Reinforced Plastics by Drill Tools)

  • 박종남;조규재
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.15-21
    • /
    • 2004
  • Composite materials are widely used to make all kinds of machine parts, internal and structural materials of cars, aerospace industries, building structures, ship materials, sporting goods and others. It is worth the while to use composite materials as various substitutions when compared with others. But the use is limited in the field of the mechanical processing because of its difficulties in processing. Thus, it is proved that the surface is rough in and out of the hole processing the GFRP with HSS drill in the vertical machining center.

공작기계의 이송계 제어 시스템의 최적화 (Optimization of Motion Control System on the Machine Tool)

  • 박인준;곽경남;백형래
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.336-340
    • /
    • 1997
  • This paper is a study about motor technic of motion and feedforward control in order to shape cutting control on the machine tool. The shape error caused by delay of the servo system in the direction of radius at the time of circular cutting is reduced by feedforward control, shape error generated by the position command delay is minimized by using the acceleration/deceleration time constant after the interpolation. The study was verified to optimization of motion control on experiments of a vertical machining center of the machine tool.

  • PDF

신뢰도를 고려한 측정시스템의 개선 (High Accuracy Measuring System on the Machine Tool by Neasurement Error Compensation)

  • 공민규;정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.527-532
    • /
    • 1993
  • MascMC system is one of the MMC system module which performs measuring and checking of machined workpieces on the machine tools. Accuracy of the MascMC was compensated for developing a reliable measuring system by measurement error calibration. Reference gauges, ring gauges, block gauges,squares, spheres and cylindrical squares, were used for error identification and compensation. .+-. 10 .mu. m accuracy with 95% confidence interval was confirmed on the vertical and the horizontal machining center through the large number of experiments.

  • PDF

엔드밀링 공정에서 극점배치 구속적응제어 시스템 (A Pole-Assignment ACC System in the Peripheral End Milling Process)

  • 정성종
    • 한국생산제조학회지
    • /
    • 제5권2호
    • /
    • pp.63-72
    • /
    • 1996
  • In order to regulate the cutting force at a desired level during peripheral end milling processes a feedrate override Adaptive Control Constraint (ACC) system was developed. The feedrate override function was accomplished through a development of programmable machine controller (PMC) interface technique on the NC controller, Nonlinear model of the cutting process was linearized as an adaptive model with a time varying process parameter. An integral type estimator was introduced for on-line estimation of the cutting process parameter, Zero order hold digital control methodology which uses pole-assignment concept for tuning of PI controllers was applied for the ACC system. Performance of the ACC system wsa confirmed on the vertical machining center equipped with fanuc OMC through a large amount of experiment.

  • PDF

Specific Cutting Force Coefficients Modeling of End Milling by Neural Network

  • Lee, Sin-Young;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.622-632
    • /
    • 2000
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on. The cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling processes for various cutting conditions, their mathematical model is important and the model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging forces of cutting tests. In this paper the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in the learning stage as the omitted number of experimental data increase the average errors increase as well.

  • PDF

가공방법에 따른 GFRP의 절삭특성 (The Cutting Characteristics of the GFRP by Processing methods)

  • 박종남;정성택;이승철;조규재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1764-1767
    • /
    • 2003
  • It is widely used in composite materials like several mechanical parts. aerospace industries. internal and structural materials of cars, building structures. ship materials and sporting goods. but it is insufficient to apply in field of mechanical processing. Therefore. GFRP which is possible to use in industrial field was examined about cutting force. tool wear condition of cutting, chip shape. surface roughness and inlet or outlet shape of processing parts with changing cutting condition and using HSS drill which is in vertical machining center in this paper.

  • PDF

기준물을 이용한 NC 공작기계의 체적오차 규명 (Volumetric Error Identification for NC Machine Tools Using the Reference Artifact)

  • 김경돈;정성종
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2899-2908
    • /
    • 2000
  • Methodology of volumetric error identification is presented to improve the accuracy of NC machine tools by using a reference artifact and a touch trigger probe. Homogeneous transformation matrix and kinematic chain are used for modeling the geometric and thermal errors of a three-axis vertical machining center. The reference artifact is designed and fabricated to identify the model parameters by machine tool metrology. Parameters in the error model are able to be identified and updated by direct measurement of the reference artifact on the machine tool under the actual conditions which include the thermal interactions of error sources. The proposed method can speed up and simplify volumetric error identification processes.

볼바 시스템을 이용한 기상측정오차 보정 (On-Machine Measurement Error Compensation Using Ball-bar System)

  • 이세희;서태일;조명우
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.56-63
    • /
    • 2001
  • The objective of this research is to develop a measurement error compensation method for On-Machine Measurement (OMM) process based on a closed-loop configuration. Geometric errors of vertical machining center are measured using ball-bar system, and probing errors are measured using master ball. The errors are represented using homogeneous trans-formation matrices and the closed-loop configuration method is applied to calculate 3-dimensional errors. To verify the effectiveness of the method proposed in this research, compensated results are compared to the data using CMM process, and the results are analyzed. The results show the proposed method can be applied in OMM process to make the measured data more reliable.

  • PDF

공작기계 원점 열변형오차의 실시간 규명 및 보상제어 (Real-time Estimation and Compensation of Thermal Error for the Machine Origin of Machine Tools)

  • 안중용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.148-153
    • /
    • 1998
  • In order to control thermal deformation of machine origin of machine tools due to internal and external heat sources, the real-time compensation system has been developed. First, GMDH models were constructed to estimate thermal deformation of machine origin for a vertical machining center through the measurement of deformation data and temperature data of specific points on the machine tool. Thermocouples and gap sensors are used respectively for measurement. These models are nonlinear equations with high-order polynomials and implemented in a multilayered perceptron type network structure. Secondly, work origin shift method were developed by implementing digital I/O interface board between CNC controller and IBM-PC. The work origin shift method is to shift the work origin by the compensation amounts which is calculated by pre-established GMDH model. From the experimental result, thermal deformation of machine origin was reduced to below $\pm$5${\mu}{\textrm}{m}$.

  • PDF

공작기계용 원격 고장진단 및 보수 시스템 (Remote Fault Diagnosis and Maintenance System for NC Machine Tools)

  • 신동수;현웅근;정성종
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.19-25
    • /
    • 1998
  • Remote fault diagnosis and maintenance system using general telecommunication network is necessary for an effective fault diagnosis and higher productivity of NC machine tools. In order to monitor machine tool condition and diagnose alarm states due to electrical and mechanical faults, a remote data communication system for monitoring of NC machine fault diagnosis and status is developed. The developed system consists of (1) remote communication module among NC's and host PC using PSTN. (2) 8 channels analog data sensing module, (3) digital I/O module for control or NC machine, (4) communication module between NC machine and remote data communication system via RS-232C, and (5) software man-machine interface. Diagnostic monitoring results generated through a successive type inference engine are displayed in user-friendly graphics. The validity and reliability of the developed system is verified to be a powerful commercial version on a vertical machining center through a series of experiments.

  • PDF