• Title/Summary/Keyword: Vertical Guide Bearing

Search Result 14, Processing Time 0.018 seconds

Full Duplex Robot System for Transferring Flat Panel Display Glass (디스플레이용 판유리 이송을 위한 양방향 이송 로봇장치)

  • Lee, Dong Hun;Lee, Chibum;Kim, Sung Dong;Cho, Young Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.996-1002
    • /
    • 2013
  • This study addresses the development of a full duplex robotic system for transferring flat-panel display glass. We propose to accomplish this using a bidirectional linear transfer mechanism in place of the conventional rotary transfer mechanism. The developed full duplex robot comprises a driving part that carries the glass panel laterally, vertical part that can be moved up and down by means of a ball screw and linear motion guide arrangement, and hand part that slides by the cylinder of the driving part along the guide rail with a V-guide bearing attached to the bottom of the support. In addition, an alignment part prevents the hand part from derailing and holds the hand part while the driving part moves horizontally. The full duplex robot lifts and drives a glass panel directly while transferring it to the buffer and does not require rotational motion. Therefore, both transferring and stacking are realized with a single device. This device can be used in existing industrial facilities as an alternative to existing industrial robots in current as well as future process lines. The proposed full duplex robot is expected to save considerable amounts of time and space, and increase product throughput.

Development of the Energy Storing Foot (에너지 저장형 인공발의 개발)

  • Kim, G.S.;Ryu, J.C.;Kim, S.J.;Mun, M.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.253-256
    • /
    • 1997
  • KESF-1 foot conceptually provides storage of potential energy and is converted to kinetic energy throughout the weight - bearing phase of the gait cycle. This stored energy is progressively released as the foot continues through the toe-off phase to rebound and propel the body forward. A weight deflects the keel through a predetermined range, then the keel "springs back" as weight is removed. Foot designs criteria were selected to guide development beyond the proof-of concept composite material keels; 1) store and return energy (1-3/4 " metatarsal deflection at 435 pounds vertical load), 2) natural feel and stability; 3) useful life of 3-years: 4) lightweight; 5) reduced production costs. The purpose of this study is developed the comfortable stable foot that fitted with Korean lifestyle and road condition. The results produced the realistic cosmetic foot cover with polyurethane form and the keel composed with composite materials of both glass fiber and carbon fiber.

  • PDF

An Experimental Study on the Shear Behavior of Reinforced Concrete Deep Beams Subject to Concentrated Loads (집중하중을 받는 철근콘크리트 깊은 보의 전단거동에 관한 실험적 연구)

  • Lee, Jin-Seop;Kim, Sang-Sik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.191-200
    • /
    • 1999
  • The shear behavior of simply supported reinforced concrete deep beams subject to concentrated loads has been scrutinized experimentally to verify the influence of the structural parameters such as concrete strength, shear span-depth ratio, and web reinforcements. A total of 42 reinforced concrete deep beams with compressive strengths of 250 kg/$cm^2$ and 500 kg/$cm^2$ has been tested at the laboratory under one or two-point top loading. The shear span-depth ratio have been taken as three types of 0.4, 0.8 and 1.2, and the horizontal and vertical shear reinforcements ratio, ranging from 0.0 to 0.57 percent respectively. In the tests, the effects of the shear span-depth ratio, concrete strength and web reinforcements on the shear strength and crack initiation and propagation have been carefully checked and analyzed. From the tests, it has been observed that the failures of all specimens were due to shear and the shear behaviors of specimens were greatly affected by inclined cracks from the load application points to the supports in shear span. The load bearing capacities have changed significantly depending on the shear span ratio, and the efficiency of horizontal shear reinforcements were increased as the shear span-depth ratio decreased. The test results have been analyzed and compared with the formulas proposed by previous researchers and the design equation from the code. While the shear strengths obtained from the tests showed around 1.4 and 1.9 times higher than the values calculated by CIRIA guide and the domestic code, they were closely coincident with the formulas given by de Paiva's equation.

Functional analysis of isolated posterior cruciate ligament deficient subjects (후방 십자 인대 단독 손상 환자의 기능적 분석)

  • Kim Jin Goo
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.3 no.1
    • /
    • pp.66-72
    • /
    • 2004
  • Purpose: To evaluate the compensatory mechanism in vivo and develop the treatment guide by performing the comprehensive functional tests of the posterior cruciate ligament (PCL) deficient subjects. Material and Methods: 10 PCL deficient subjects and 10 healthy control group were evaluated. Performed functional tests were range of motion, posterior drawer test, Telos, 30$^{\circ}$ flexion wt-bearing view, KT-1000 arthrometer, gait analysis, EMG test and isokinetic tests. Results: Physical, KT-1000, Telos posterior tests showed significant differences, but 300 full weight bearing lateral view, muscle strength test revealed no difference between two groups. Less knee flexion at initial contact and reduced maximum valgus moment were observed in PCL deficient group. In vertical drop landing, PCL group had increased plantar flexion angle at initial contact. Conclusion: Compensatory mechanisms such as reduced unstable components and absorbing the maximal load of the joint were occurred after PCL insufficiency, which result in good clinical and functional outcomes. Further investigations would be needed to understand the functional adaptations of PCL deficient subjects.

  • PDF