• 제목/요약/키워드: Vertical Deformation

검색결과 623건 처리시간 0.026초

원심모형실험을 통한 원형 수직구 굴착 중 발생하는 지반 변형 평가 (Evaluation of Ground Deformation during Excavation of Vertical Shaft through Centrifuge Model Test)

  • 김준영
    • 한국지반공학회논문집
    • /
    • 제38권1호
    • /
    • pp.35-45
    • /
    • 2022
  • 개착공법으로 원형 수직구 건설 시, 가시설 흙막이 벽체는 일정 수준의 변위를 허용하는 연성벽체로 설계된다. 합리적이고 경제적인 연성벽체의 구조 설계를 위해서는 벽체에 작용하는 토압을 정확히 평가할 필요가 있다. 원형 수직구 벽체에 작용하는 토압은 주변 지반의 소성 변형과 밀접하게 연관되어 있으나, 이에 대한 연구는 부족한 상황이다. 본 연구는 원형 수직구의 단계 굴착을 원심모형시험을 통해 모사하고, 원심모형시험 중 촬영된 이미지에 이미지 해석 기법을 적용하여 원형 수직구 굴착 시 주변 지반에 발생하는 변형을 평가하였다.

KINKING DEFORMATION OF PVD UNDER CONSOLIDATION OF NATURAL CLAY LAYER

  • Aboshi, Hisao;Inoue, Toshiyuki;Yamada, Yoshimitsu
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.349-356
    • /
    • 2003
  • Almost every material of PVD (Prefabricated Vertical Drain) has the fatal problem on the condition - the length must shorten with the settlement of the surrounding grounds - which all PVDs must satisfy. Kinking deformation by buckling of PVD due to consolidation settlement Is discussed in this paper. A new testing device to clarify the deformation of PVD under consolidation of surrounding clay was developed and the fiber drain and a PVD made of plastics were compared under the same condition of consolidation using natural clay specimens. The results are also shown in this paper.

  • PDF

콘크리트 표면차수벽형 석괴댐(CFRD)의 거동해석 (A Case Study on Deformation Characteristics of Concrete Face Rockfill Dam)

  • 김훈;정규정;이왕곤;장중렬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.111-116
    • /
    • 2003
  • Instrumentation system in Concrete Face Rockfill Dam(CFRD) can give special attention to the deformation characteristics of the rockfill and behavior of the concrete membrane during construction, reservoir filling and subsequent phase of operation. It also contains data about vertical and transversal compressibility moduli of the rockfill, deflections in the concrete slab, and draws comparisons with other concrete face rockfill dams of recent construction. In this paper, the internal deformation data from D dam monitored by means of hydrostatic settlements cells are analyzed. Observations cover the construction stage, reservoir filling and up to March 1991. The above method can be concluded D dam was well constructed and maintained.

  • PDF

실리카흄을 혼입한 원심력 콘크리트관의 강도특성 (Strength Charcteristics of Centrifugal Pipes With Silica Fume Concrete)

  • 김태경
    • 산업기술연구
    • /
    • 제16권
    • /
    • pp.31-38
    • /
    • 1996
  • This experimental study was conducted to analyze the characteristics of centrifugal pipes which were made of silica fume concrete. External load tests showed that maximum external load ranged from 1,100~5,300kgf/m with thickness ratio(t/D) of between 4.5%~10.0%. Correlation between thickness ratios and external loads was excellent with $R^2$ of 0.99. Respective correlation between measured and computed vertical deformation was good with $R^2$ of higher than 0.90. And therefore, vertical deformation and tensile stress of centrifugal concrete pipes may be theoretically computed with a good precision.

  • PDF

균열로의 그늘효과에 의한 슬랩변형에 관한 수치해석적 연구 (Numerical Study of Shadow Effect on Slab Deformation in Reheating Furnace)

  • 노정훈;황병복;맹주원;김재도
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.132-139
    • /
    • 2011
  • Three dimensional simulations were performed for the deformation of a slab in a roller hearth type slab reheating furnace. The main objective of this study was to examine the deformation pattern of the slab due to the shadow effect, i.e., the temperature difference between the upper and lower slab surfaces, in particular, the variations of displacement and effective stress in the vertical direction. A commercially available FE code, ANSYS Workbench $12.1^{TM}$, was used in a fully coupled thermo-elasticity analysis. Several cases with different slab surface temperatures were selected for the simulations. For the sake of simplicity, the temperature environment inside the furnace was assumed to be homogeneous for the upper and lower faces of the slab. Two cases of with different slab width were selected as model geometry. The deformation patterns were computed and explained in terms of periodicity and symmetry. The results indicated that the shadow effect leads to a significant displacement in the vertical direction and, thereby, is one of the main reasons for the separation of the slab and its supports. These simulations also predicted that the deformation is more severe along the transverse direction than along the longitudinal direction.

사이징 프레스에서 폭 압하 공정중 결함 저감을 위한 엔빌의 형상설계 (Design of the Anvil Shape in Sizing Press for Decrease of the Defect Generated Width Reduction)

  • 이상호;이성진;이종빈;김병민
    • 소성∙가공
    • /
    • 제18권1호
    • /
    • pp.52-58
    • /
    • 2009
  • Generally, a vertical rolling process is used to achieve extensive width reduction in hot strip mill. However, it is impossible to avoid the defects such as dog-bone and edge-seam defect. The sizing press process has been developed in response to the defects mentioned above. Especially, this study is carried out to investigate the deformation of slab by two-step sizing press. The deformation behavior of slab in the sizing press process is more favorable than that in conventional vertical rolling edger. The FE-simulation is applied to predict the deformation behavior of the slab. In this paper, the several causes of the asymmetrical deformation are mentioned for the purpose of understanding of the anvil shape. Load, dog-bone and edge-seam defect are discussed in width sizing process considering the anvil shape. And to reduce the problems generated at rougher mill just after sizing press, these are studied in this paper. The deformation behavior of slabs and optimum anvil shape are obtained by rigid-plastic finite element analyses and neural network.

열간 압연에서 2단 사이징 프레스 금형에 의한 슬래브의 변형거동 예측 (Deformation Behavior of Slab by Two-Step Sizing Press in a Hot Strip Mill)

  • 이상호;김동환;변상민;박해두;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.432-435
    • /
    • 2005
  • Extensive width reduction of slabs is an important technology to achieve continuous production between the steelmaking and hot rolling processes. Conventionally, a vertical roll process has been used to achieve extensive width reduction. However, it is impossible to avoid the defects such as dog-bone, fish tail and camber. The deformation behavior in the width sizing process is more favorable than that in conventional vertical rolling edger, i.e. the material better flows toward the center of slab. This study is carried out to investigate the deformation of slab by two-step sizing press. The FE-simulation is utilized to predict plastic deformation mode in compression by a sizing press of slabs far hot rolling. In this paper, the various causes of the asymmetrical rolling phenomena are mentioned for the purpose of understanding of rolling conditions. Analytical results of slab-deformation by sizing press are presented below in this study.

  • PDF

수직형 건식 진공 스크류 펌프의 열특성에 대한 연구 (A Study on the Thermal Characteristics of Dry Vacuum Pump with Vertical Screws)

  • 장문석;박재현;김수태;김일곤;조성진
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.67-74
    • /
    • 2015
  • In this study, analysis and experiments were carried out on temperature distributions and thermal deformations in a dry vacuum pump with vertical screws for safe operation. When a vacuum pump is working, it is necessary to get rid of the heat generated by the friction of bearings and the compression of air to prevent the vacuum pump from being damaged by interference between two screws and housing through thermal deformation. Additional cooling was proposed by using oil flow through the inner channel of the rotating axis for lower temperature control of the vacuum pump. Analysis and experimental results were compared in terms of temperature distribution and thermal deformation of the vacuum pump, and two sets of results matched reasonably well. These results for a dry vacuum pump with vertical screws can be used in similar model development and can minimize errors in design and manufacture by providing reasonably accurate prediction in advance.

Foundation Differential Settlement Included Time-dependent Elevation Control for Super Tall Structures

  • Zhao, Xin;Liu, Shehong
    • 국제초고층학회논문집
    • /
    • 제6권1호
    • /
    • pp.83-89
    • /
    • 2017
  • Due to the time-dependent properties of materials, structures, and loads, accurate time-dependent effects analysis and precise construction controls are very significant for rational analysis and design and saving project cost. Elevation control is an important part of the time-dependent construction control in supertall structures. Since supertall structures have numerous floors, heavy loads, long construction times, demanding processes, and are typically located in the soft coastal soil areas, both the time-dependent features of superstructure and settlement are very obvious. By using the time-dependent coupling effect analysis method, this paper compares Shanghai Tower's vertical deformation calculation and elevation control scheme, considering foundation differential settlement. The results show that the foundation differential settlement cannot be ignored in vertical deformation calculations and elevation control for supertall structures. The impact of foundation differential settlement for elevation compensation and pre-adjustment length can be divided into direct and indirect effects. Meanwhile, in the engineering practice of elevation control for supertall structures, it is recommended to adopt the multi-level elevation control method with relative elevation control and design elevation control, without considering the overall settlement in the construction process.

Structural system identification including shear deformation of composite bridges from vertical deflections

  • Emadi, Seyyedbehrad;Lozano-Galant, Jose A.;Xia, Ye;Ramos, Gonzalo;Turmo, Jose
    • Steel and Composite Structures
    • /
    • 제32권6호
    • /
    • pp.731-741
    • /
    • 2019
  • Shear deformation effects are neglected in most structural system identification methods. This assumption might lead to important errors in some structures like built up steel or composite deep beams. Recently, the observability techniques were presented as one of the first methods for the inverse analysis of structures including the shear effects. In this way, the mechanical properties of the structures could be obtained from the nodal movements measured on static tests. One of the main controversial features of this procedure is the fact that the measurement set must include rotations. This characteristic might be especially problematic in those structures where rotations cannot be measured. To solve this problem and to increase its applicability, this paper proposes an update of the observability method to enable the structural identification including shear effects by measuring only vertical deflections. This modification is based on the introduction of a numerical optimization method. With this aim, the inverse analysis of several examples of growing complexity are presented to illustrate the validity and potential of the updated method.