• Title/Summary/Keyword: Vertical Crack

Search Result 230, Processing Time 0.024 seconds

Improvement and Evaluation of Seismic Resistant Performance of Reinforced Concrete Infilled Masonry Frame with Restraining Factor of Frame (철근콘크리트 프레임면내 조적벽체의 골조 구속에 따른 내진성능 평가 및 개선)

  • Shin, Jong-Hack;Ha, Gee-Joo;Lee, Hee-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.131-139
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of RC frame structures with masonry infilled wall, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method. Six reinforced concrete rigid frame and masonry infilled wall were tested and constructed in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled wall with restraining factors of frame(IFWB-1~3), cumulated energy dissipation capacities were increased by 1.35~1.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing. For masonry infilled wall with restraining factors of frame, maximum horizontal capacities were increased by 1.91~2.24 times in comparision with that of rigid frame.

  • PDF

Improvement and Evaluation of Seismic Resistant Performance of Reinforced Concrete Infilled Masonry Frame (철근콘크리트 프레임면내 조적벽체의 내진성능 평가 및 개선기술)

  • Shin, Jong-Hack;Ha, Gee-Joo;Jun, Ha-Suk;Lee, Jong-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.147-155
    • /
    • 2000
  • Five reinforced concrete rigid frame and masonry infilled wall and cut off type masonry infilled wall were tesed during vertical and cyclic loads simultaneously. Experimental programs were accomplished to improve and evaluate the structural performance of test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are hoop reinforcement ratio, with or without masonry infilled wall, and masonry method. All the specimens were constructed in one-third scale size. Based on the test results, the following conclusions can be made. For masonry infilled wall(IFB-1), maximum horizontal capacity was increased by 1.45 time in comparision with that of rigid frame(FB-0). For cut off masonry infilled wall (IFBC-1~3), maximum horizontal capacity was increased by 1.73~1.98 time in comparision with that of rigid frame(FB-0). For cut off masonry infilled wall(IFBG-1~3), ductility was increased by 1.48~2.08 time in comparision with that of masonry infilled wall (IFB-1).

  • PDF

Numerical simulation of concrete beams reinforced with composite GFRP-Steel bars under three points bending

  • Elamary, Ahmed S.;Abd-ELwahab, Rafik K.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.937-949
    • /
    • 2016
  • Fiber reinforced polymer (FRP) applications in the structural engineering field include concrete-FRP composite systems, where FRP components are either attached to or embedded into concrete structures to improve their structural performance. This paper presents the results of an analytical study conducted using finite element model (FEM) to simulate the behavior of three-points load beam reinforced with GFRP and/or steel bars. To calibrate the FEM, a small-scale experimental program was carried out using six reinforced concrete beams with $200{\times}200mm$ cross section and 1000 mm length cast and tested under three point bending load. The six beams were divided into three groups, each group contained two beams. The first group was a reference beams which was cast without any reinforcement, the second group concrete beams was reinforced using GFRP, and the third group concrete beams was reinforced with steel bars. Nonlinear finite element simulations were executed using ANSYS software package. The difference between the theoretical and experimental results of beams vertical deflection and beams crack shapes were within acceptable degree of accuracy. Parametric study using the calibrated model was carried out to evaluate two parameters (1) effect of number and position of longitudinal main bars on beam behavior; (2) performance of concrete beam with composite longitudinal reinforcement steel and GFRP bars.

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.

Constructional Verification Evaluation for Securing the Field Quality of Composite Membrane Waterproofing Material (멤브레인 복합 방수재의 현장품질 안정성 확보를 위한 시공성 실증 평가 연구)

  • Kim, Meong-Ji;Lee, Sang-Wook;Kim, Soo-Yeon;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.87-95
    • /
    • 2021
  • In this study, seven companies(A~G) designated as new construction technology selected and evaluated KS F 2622: Method of test for performance evaluation of membrane roofing systems that are similar to field application conditions. As a result of the test, it was confirmed that although all test specimens exceeded KS standards in the basic physical, it was difficult to obtain field quality performance in weak areas such as joints and vertical parts of the adhesive coating method in water-tightness, sagging resistance, swelling resistance tests except for fatigue(crack behavior) tests.

Seismic Fragility Analysis of Reinforced Concrete Shear Walls Considering Material Deterioration (재료의 열화를 고려한 철근콘크리트 전단벽의 지진 취약도 분석)

  • Myung Kue, Lee;Jang Ho, Park
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.81-88
    • /
    • 2022
  • It is necessary to better understand the effect of age-related degradation on the performance of reinforced concrete shear walls in nuclear power plants in order to ensure their structural safety in the event of earthquakes. Therefore, this paper studies seismic fragility of the typical shear wall in nuclear power plants under earthquake excitation Reinforced concrete shear wall is composed of wall, horizontal and vertical flanges. Due to characteristics of its geometry, it is difficult to predict the ultimate behavior of shear wall under earthquake excitation. In this study, for more realistic numerical simulation, the Latin Hyper-Cube (LHC) simulation technique was used to generate uncertain variables for the material properties of concrete shear walls. The effects of crack, characteristics of inelastic behavior of concrete, and loss of cross section were considered in the nonlinear finite element analysis. The effects of aging-related deterioration were investigated on the performance of reinforced concrete shear walls through analysis of undegraded concrete shear walls and degraded concrete shear walls. The resulting seismic fragility curves present the change of performance of concrete shear wall due to age-related degradation.

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.25.1-25.11
    • /
    • 2020
  • Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.

A study on the seismic performance of reinforced concrete frames with dry stack masonry wall using concrete block

  • Joong-Won Lee;Kwang-Ho Choi
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.205-215
    • /
    • 2023
  • Currently, many studies are underway at home and abroad on the seismic performance evaluation and dry construction method of the masonry structure. In this study, a dry stack masonry wall system without mortar using concrete blocks is proposed, and investigate the seismic performance of dry filling wall frames through experimental studies. First, two types of standard blocks and key blocks were designed to assemble dry walls of concrete blocks. And then, three types of experiments were manufactured, including pure frame, 1/2 height filling wall frame, and full height filling wall frame, and cyclic load experiments in horizontal direction were performed to analyze crack patterns, load displacement history, rebar deformation yield, effective stiffness change, displacement ductility, and energy dissipation capacity. According to the experimental results, the full height filling wall frame had the largest horizontal resistance against the earthquake load and showed a high energy dissipation capacity. However, the 1/2 height filling wall frame requires attention because the filling wall constrains the effective span of the column, limiting the horizontal displacement of the frame. In addition, the concrete block was firmly assembled in the vertical direction of the wall as the horizontal movement between the concrete blocks was allowed within installation margin, and there was no dropping of the assembled concrete block.

Study on Measurement Condition Effects of CRP-based Structure Monitoring Techniques for Disaster Response (재해 대응을 위한 CRP기반 시설물 모니터링 기법의 계측조건 영향 분석)

  • Lee, Donghwan;Leem, Junghyun;Park, Jihwan;Yu, Byoungjoon;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.541-547
    • /
    • 2017
  • Climate change has become the main cause of the exacerbation in natural disasters. Social Overhead Capital(SOC) structure needs to be checked for displacement and crack periodically to prevent damage and the collapse caused by natural disaster and ensure the safety. For efficient structure maintenance, the optical image technology is applied to the Structure Health Monitoring(SHM). However, optical image is sensitive to environmental factors. So it is necessary to verify its validity. In this paper, the accuracy of estimating the vertical displacement was verified with respect to environmental condition such as natural light, measurement distance, and the number of image sheets. The result of experiments showed that the effect of natural light on accuracy of estimating vertical displacement was the greatest of all. The measurement angle which was affected by the change in measurement distance was also important to check the vertical displacement. These findings will be taken into account by applying appropriate environmental condition to minimize errors when the bridge was measured by camera. It will also enable the application of optical images to the SHM.

Investigation of Fatigue Strength and Prediction of Remaining Life in the Butt Welds Containing Penetration Defects (블완전용입 맞대기 용접재의 용입깊이에 따른 피로강도특성 및 잔류수명의 산출)

  • Han, Seung Ho;Han, Jeong Woo;Shin, Byung Chun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.423-435
    • /
    • 1998
  • In this paper fatigue strength reduction of butt weld with penetration defect, which can be seen frequently in the steel bridge, was assessed quantitatively. S-N curves were derived and investigated through the constant amplitude fatigue test of fully or partially penetrated welded specimen made of SWS490 steel. The fracture mechanical method was applied in order to calculate the remaining fatigue life of the partially penetrated butt welds. The fatigue limit of the fully penetrated butt welds was higher than that of category A in AASHTO's fatigue design curves, and the slope of S-N curves with 5.57 was stiffer than that of other result for welded part generally accepted as 3. The fatigue strength of the partially Penetrated butt weld was strongly influenced by the size of lack of penetration, D. It decreased drastically with increasing D from 3.9 to 14.7mm. Fracture behaviour of the partially penetrated butt weld is able to be explained obviously from the beach mark test that a semi-elliptical surface crack with small a/c ratio initiates at a internal weld root and propagates through the weld metal. To estimate the fatigue life of the partially penetrated butt weld with fracture mechanics, stress intensity factors K of 3-dimensional semi-elliptical crack were calculated by appling finite elements method and fracture mechanics parameters such as C and m were derived through the fatigue test of CT-specimen. As a result, the fatigue lives obtained by using the fracture mechanical method agreed well with the experimental results. The results were applied to Sung-Su bridge collapsed due to penetration defects in butt weld of vertical member.

  • PDF