• Title/Summary/Keyword: Vertical Crack

Search Result 230, Processing Time 0.028 seconds

The Study on Dynamic Analysis of Durability of a Wheel using CAE (CAE를 이용한 휠 내구성능 동역학 해석을 위한 연구)

  • Park, Jae Heung;Park, Tae Won;Jung, Sung Pil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1296-1303
    • /
    • 2012
  • There is a certain limit to reproduce phenomena between the real vehicle and road, since the existing methods to verify durability of the wheel are mostly uni-axial tests. And the change of durability of the wheel can't be predicted since these tests don't consider the camber angle and lateral force as important factors. In this paper, the FE models of the wheel-tire and drum are created. Then, the vertical and lateral loads are applied to wheel-tire assembly and the camber angle is applied by inclining the wheel-tire assembly to the drum. Based on the analysis result, the crack position is predicted to be created in the body of the wheel. The variation of the stress according to the camber angle is verified and the maximum spot of the stress changes continually.

Load-Displacement Formulations of Low-rise Unbounded RC Shear Walls with or without Openings

  • Lou, K. Y.;Cheng, F. Y.;Sheu, M. S.;Zhang, X. Z.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.117-130
    • /
    • 2001
  • Investigations of low-rice unbounded reinforced concrete shear walls with or without openings are performed with comparison of analytical and experimental results. Theoretical analysis is based on nonlinear finite element algorithm, which incorporates concrete failure criterion and nonlinear constitutive relationships. Studios focus on the effects of height-to-length ratio of shear walls, opening ratio, horizontal and vertical reinforcement radios, and diagonal reinforcement. Analytical solutions conform well with experimental results. Equations for cracking, yielding and ultimate loads with corresponding lateral displacements are derived by regression using analytical results and experimental data. Also, failure modes of low-rise unbounded shear walls are theoretically investigated. An explanation of change in failure mode is ascertained by comparing analytical results and ACI code equations. Shear-flexural failure can be obtained with additional flexural reinforcement to increase a wall's capacity. This concept leads to a design method of reducing flexural reinforcement in low-rise bounded solid shear wall's. Avoidance of shear failure as well as less reinforcement congestion leer these walls is expected.

  • PDF

Improvement of Durability and Reliability by Developing a Bi-axial Test Process of Road Wheel (차량 로드 휠의 복합축 평가 프로세스 구축을 통한 내구신뢰성 강건화 및 주행안정성 향상)

  • Chung, Soo Sik;Yoo, Yoen Sang;Kim, Dae Sung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.26-30
    • /
    • 2016
  • The steel road wheel on ventilation holes was cracked in the vehicle durability test. But the component durability test by uni-axial, CFT(Cornering Fatigue Test) and RFT(Radial Fatigue Test) had been satisfied. That is, the uni-axial component test could not forecast the crack of vehicle. Therefore this study developed the bi-axial test mode to reflect a vehicle condition(to reflect both vertical and lateral force simultaneously) based on real load data which was measured in Europe and China and developed CAE simulation too. It reproduced the cracks same as vehicle's and verified by bi-axial test machine in the LBF(Fraunhofer Institute for Structural Durability and System Reliability) durability research center in Germany. Finally this the durability CAE simulation by using HMC(Hyundai Motor Company)'s the bi-axial test mode predicts feasibly the steel wheel's durability performance before vehicle durability test.

Behavior of reinforced lightweight aggregate concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Al-Aziz, Basma M. Abdul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 2018
  • This research investigate the behavior of reinforced normal and lightweight aggregate concrete hollow core slabs with different core shapes, shear span to effective depth (a/d). The experimental work includes testing seven reinforced concrete slabs under two vertical line loads. The dimensions of slab specimens were (1.1 m) length, (0.6 m) width and (0.12 m) thickness. The maximum reduction in weight due to aggregate type was (19.28%) and due to cross section (square and circular) cores was (17.37 and 13.64%) respectively. The test results showed that the decrease of shear span to effective depth ratio from 2.9 to 1.9 for lightweight aggregate solid slab cause an increase in ultimate load by (29.06%) and increase in the deflection value at ultimate load or the ultimate deflection by (17.79%). The use of lightweight aggregate concrete in casting solid slabs give a reduction in weight by (19.28%) and in the first cracking and ultimate loads by (16.37%) and (5%) respectively for constant (a/d=2.9).The use of lightweight aggregate concrete in casting hollow circular core slabs with constant (a/d=2.9) (reduction in weight 32.92%) decrease the cracking and ultimate loads by (12%) and (5.18%) respectively with respect to the solid slab. These slab specimens were analyzed numerically by using the finite element computer program ANSYS. Good agreements in terms of behavior, cracking load (load at first visible crack) and ultimate load (maximum value of testing load) was obtained between finite element analysis and experimental test results.

Evaluation of Structural Performance on Corbel in the Reinforced Concrete (철근콘크리트 코오벨 부재의 구조성능 평가 및 내력 추정)

  • Cho, Seong-Ho;Park, Tae-Won;Woo, Sung-Sik;Chung, Lan;Park, Hyun-Soo;Kim, Dong-Baek
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.58-64
    • /
    • 2008
  • In order to identify the exact behavior of corbel section, the horizontal force acting on corbel section should be considered as well as the vertical force. In this study, a new corbel section, which is economical and easy to construct, is developed by evaluating the exact strength of the section. Experiments were performed to verify the strengths of the proposed sections comparing with those of the currently used section. The summary of the experiment results are as follows: 1) In order to minimize the horizontal force effect, it was found that the use of pre-stressing was most effective, and that TB type corbel section is a most efficient section in terms of economy and workability. 2) The experimentally obtained strength of corbel section matched well with that estimated using shear friction theory. Therefore, it is concluded that shear friction theory would be very useful if a precise crack angie in the corbel section, which is pre-stressed by PS strings and threaded bolts, is available.

Thermal Stress Analysis of Functuonally Graded Ceramic/Metal Composites(I)-Plasma Spraying Material- (경사기능성 세라믹/금속 복합재료의 열응력 해석(1)-플라즈마 용사재-)

  • Song, Jun-Hee;Lim, Jae-Kyoo;Chung, Se-Hi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.439-446
    • /
    • 1997
  • A traditional notion of composites has been composed as a uniform dispersoid, but now it is proposed without regard to such rule with process development. Functionally Graded Material(FGM) consists of a new material design that is to make intentionally irregular dispersion state. In this study, thermal stress analysis of plasma spraying PSZ/NiCrAlY gradient material was conducted theoretically using a finite-element program. A formations of the model are direct bonding material(NFGM) and FGM with PSZ and NiCrAlY component element. The temperature conditions were $700^{\circ}C$ to 1100.deg. C assuming a cooling-down precess up to room temperature. Fracture damage mechanism was analyzed by the parameters of residual stress.

C-Ring Stress Corrosion Test for Inconel 600 Tube and Inconel 690 welded by Nd:YAG Laser (Nd:YAG 레이저로 용접한 인코넬 600관과 인코넬 690의 C링 응력 부식시험)

  • 김재도;문주홍;정진만;김철중
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.288-291
    • /
    • 1998
  • Inconel 600 alloy is used as the material of nuclear steam generator tubing because of its mechanical properties, formability, and corrosion properties. According to reports, the life time of nuclear power plants decreases because of the pitting, intergranular attack, primary water stress corrosion cracking(PWSCC), and intergranular stress corrosion cracking(IGSCC), and denting in the steam generator. The SCC test is very important because of SCC appears in various environment such as solutions, materials, and stress. The C-Rig specimen was made of the steam generator welded sleeve repairing by the pulsed Nd:YAG laser. In the corrosion invironment, corrosion solutions are Primary Water, Caustic, and Sulfate solution and corrosion time is 1624-4877hr. The permitted stress is 30-60ksi.In this C-Ring SCC test is the relationship between corrosion depth, crack and corrosion environment is evaluated. SCC was happens in Sulfate and Corrosion solution but doesn't happen in Primary Water. The corrosion time and stress is very affected by the severely environment of Sulfate or Caustic solution. The microstructure observation indicates that SCC causes interganular failure in the grain boundary of vertical direction.

  • PDF

An Experimental Study on Shear Capacity of High-Strength Concrete Beams With Shear Span-Depth Ratio Between 1.5 and 2.5 (전단-스팬비가 작은 고강도 철근콘크리트 보의 전단성능에 관한 실험적 연구)

  • 신성우;문정일;박희민;이승훈;오정근;임남재
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.4
    • /
    • pp.171-179
    • /
    • 1992
  • 본 연구에서는 전단-스팬비가 1.5에서 2.5 범위의 고강도 콘크리트 보에 대해 기존 규준식의 안전여부를 확인하고, 사균열강도와 극한전단강도를 결정하기 위해 총 15개의 시험체를 제작하여 실험적 연구를 수행하였다. 주요변수는 전단-스팬비(a/d=1.5, 2.0, 2,5)와 수직전단철근비(Rv=0, 25, 50, 75, 100%, Rv=[$ ho$v / $\rho$v(ACI)] 100)이며, 콘크리트 압축강도(f'c=747kg/$ extrm{cm}^2$와 인장철근비($\rho$w=0.0377)는 일정하다. 실험결과 본 연구의 전단-스팬비의 범위에서 ACI 318-89 (11-31)식은 일반적으로 수직전단철근에 의해 저항되는 전단강도를 상당히 과소평가하는 것으로 나타났다. 따라서 수직전단철근에 대한 영향이 재고되어야 할 것이다.

shear Tests on female-to-female Type Joint between Precast Concrete Bridge Decks (프리캐스트 콘크리트 교량바닥판 female-female이음부의 전단실험)

  • 김영진;김영진;김종희
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.161-168
    • /
    • 1998
  • Increase of traffic volume in recent years results in deterioration of the bridge slab, which is directly subjected ot vehicle loads. Where extensive repair is necessary, replacement or enhancement of load carrying capacity using full depth precast concrete deck is often the most practical solution. Precast deck system has transverse joints between adjacent precast decks. Vertical shear forces occur when a vehicle wheel load is carried by precast decks and the joints are used to transfer the load to an adjacent deck. Effective load transfer between precast decks is critical for integral behavior. Finite element analysis and tests were run on the proposed femal-to-female type joint. 18 joint specimens were tested to investigate the effects of angle. D/H, and confining stress under static load. Results indicate joint with angle of 60$^{\circ}$ and D/H of 1/4 shows the improved load carrying capacity on crack. It is effective in protecting the cracking of joints to keep the joint in compression using confining stress.

Bond of Deformed Bars to Concrete : Effects of Confinement and Strength of Concrete (철근 콘크리트 보-기둥 접합부의 부착거동에 대한 콘크리트 강도 및 보강철근의 효과)

  • 최기봉
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.2
    • /
    • pp.115-121
    • /
    • 1991
  • Slippage of beam longitudinal reinforcement at beam-column connections is an important cause of damage to reinforced concrete frames under static and dynamic loads, This paper summarizes the results of an experimen¬tal study on the effects of confinements and compressive strength of concrete on the local bond stress-slip cha¬racteristics of deformed bars. I t is concluded from experimental results that, as far as the bond splittmg cracks are restrained by the vertical column reinforcement, confinement of concrete by transverse reinforcement has insignigicant direct effect on the local bond behavior. The ultimate bond strength, however, Increases pro¬portionally with the square root of concrete compressive strength. An empirical model was developed for local bond st ressslip relationslip of deformed bars in confined concrete of different compressive strengths.