• Title/Summary/Keyword: Vertical Coupling

Search Result 191, Processing Time 0.027 seconds

A novel vertical directional coupler with polarization independent very short coupling lengths (편광에 무관한 매우 짧은 결합 길이를 가지는 새로운 수직 방향성 결합기)

  • 정병민;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.359-364
    • /
    • 2003
  • We propose a novel vertical directional coupler with polarization independent very short coupling lengths using the double-sided deep-ridge waveguide structure which could be implemented using double-sided process to polarization insensitive deep-ridge waveguide structures and investigate the effect of various structure parameters on the coupling length. Variation of coupling length for the variation of the waveguide width is smaller than that for the variation of the core thickness. Coupling length decreases as the inner cladding layer thickness and the core thickness decrease. The waveguide width with the polarization independent coupling length decreases as the inner cladding layer thickness decreases for the same core thickness and the core thickness decreases for the same inner cladding layer thickness.

The Directional Coupler Using the Vertical Coupling Structure (수직 결합 구조를 이용한 방향성 결합기)

  • Yun, Tae-Soon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.445-450
    • /
    • 2017
  • In this paper, the directional coupler with half-power division is designed and fabricated by using the vertical coupling structure based on the CPW transmission-line. Even-mode and odd-mode of the vertical coupling structure can be analyzed by the conventional CPW-line and the CBCPW-line, respectively, with half thickness of the substrate. The directional coupler is designed by using the tefron substrate with the dielectric constant of 2.55 and the thickness of 0.76mm. Manufactured directional coupler has the center frequency of 2.45 GHz and the bandwidth of 66.1%. Also, the return loss and isolation are 19.52dB and 19.47dB, respectively, at the center frequency.

Network Architecture and Fast Vertical Handover Scheme for UMTS-WLAN Interworking (UMTS-WLAN 간 빠른 수직적 핸드오버 제공을 위한 연동망 모델 및 핸드오버 방식)

  • Kim, In-Cheol;Lee, Sung-Kuen;Kim, Eal-Lae;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8B
    • /
    • pp.492-501
    • /
    • 2007
  • UMTS-WLAN interworking approach can make the best use of the advantages of both networks by eliminating the stand-alone defects of the two services. For the interworking mechanisms of WLANs and UMTS networks, two major solutions have been proposed, namely loose coupling and tight coupling. The loose coupling approach provides separate data paths for WLAN and UMTS. On the other hand, the tight coupling provides a full integration of the WLAN network and the UMTS core network. The loose coupling has been preferred due to the simplicity and less reconfiguration requirement. However, loose coupling is worse in seamless mobility, QoS provision, and network security. In order to lessen the problems involved in the UMTS-WLAN interworking approaches, we propose a new interworking network architecture and a fast vertical handover scheme by employing Mobility Anchor(MA) for interworking between the two different networks. MA can enable authentication and session initialization before L2 handover of the mobile terminal, so that the seamless and fast vertical handover become possible. Thru analysis and numerical experiments, we proved that the proposed scheme has been validated.

Effect of wing width and thickness on the polarization characteristics of vertical directional couplers using the Double-Sided Deep-Ridge waveguide structure (Double-Sided Deep-Ridge 도파관 구조 수직 방향성 결합기의 날개구조부 폭과 두께가 편광 특성에 미치는 영향)

  • 정병민;윤정현;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.293-298
    • /
    • 2004
  • We investigate the effect of the wing width and thickness of a Double-Sided Deep-Ridge(DSDR) vertical directional coupler on the coupling length dependent on the polarization, We have found that the DSDR vertical directional coupler without a wing does not have polarization independent coupling lengths. The variation of the coupling length of TE and TM modes and the difference between the coupling lengths of the two modes are negligible as the wing width increases beyond the specific wing width for the same wing thickness. Thus, we can see that a DSDR vertical directional coupler has a wing width larger than the minimum wing width to obtain the polarization independent coupling length. The minimum wing width increases as the wing thickness increases for the same core thickness and as the core thickness decreases for the same wing width. Also, we have found that the minimum wing thickness is determined by the core thickness and the minimum wing thickness decreases as the core thickness increases.

Vertical Coupling of Polymeric Double-Layered Waveguides Using a Stepped MMI Coupler

  • Lee, Jong-Moo;Ahn, Joon-Tae;Cho, Doo-Hee;Ju, Jung-Jin;Lee, Myung-Hyun;Kim, Kyong-Hon
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.81-88
    • /
    • 2003
  • We designed a multimode interference (MMI) coupler to use in vertical coupling of double layered polymeric waveguides and analyzed the coupling characteristics by comparing our experimental and simulation results. We found that our proposed new structure, a stepped MMI coupler, is effective in vertical coupling between waveguide layers with a short length of MMI and has a high tolerance for the variation in the structure of an MMI coupler that can be induced as errors in the fabrication process.

  • PDF

The effect of the vertical excitation on horizontal response of structures

  • Ghaffarzadeh, Hosein;Nazeri, Ali
    • Earthquakes and Structures
    • /
    • v.9 no.3
    • /
    • pp.625-637
    • /
    • 2015
  • It is usual in design and assessment of structures to isolate the effects of vertical and horizontal excitations by ignoring their coupling effects. In this situation, total structural response is obtained by employing the well-known combination rules whereby independent assumed response components of earthquakes are combined. In fact, the effects of the simultaneity of the ground motion components are ignored. In this paper, the effect of vertical excitation on horizontal response of structures, the coupling of vertical and horizontal responses, has been evaluated. A computer program is prepared to perform nonlinear dynamic analysis based on the derived governing equations of coupled motions. In the case of simultaneous excitation the results show significant increases in spectral displacement in some periods of vibration in comparison to only horizontally excited systems. Moreover, whenever ratio of the vertical peak ground acceleration to horizontal one become larger, the significant increase in horizontal spectral displacements are observed.

A Study on the Evaluation of Horizontal, Vertical, Asymmetric and Coupling Multipliers of the NIOSH Lifting Equation in Korean Male (한국인 20대 남성의 NIOSH Lifting Equation 계수평가에 관한 연구)

  • Bae, Dong-Chul;Kim, Yong-Jae
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.83-88
    • /
    • 2009
  • The objective of this paper was to evaluate the effectiveness of horizontal, vertical, asymmetric and coupling multipliers for manual material handling. Lifting tasks with 5 different horizontal distances ($30{\sim}70cm$) for 6 vertical distances(ankle, knee, waist, elbow, shoulder and head height) were experimented. The muscle activity and muscle exertion level during asymmetric load handling(without trunk flexion) was experimented. Lifting tasks with and without handle tote box for three postures(straight, bending, right angle posture) were experimented. The degrading tendency did not appeared almost in $60{\sim}70cm$ interval's horizontal distance. As a result of ANOVA, MVC paid attention to horizontal and vertical distance but cross effect was insignificant(p<0.01). The change of the MVC according to the horizontal, vertical distance appeared similar from of RWL. The results of normalized MVC measurement were decreased about 16%, 24%, 34% respectively as the asymmetry angle was $30^{\circ}$, $60^{\circ}$, $90^{\circ}$. RMS EMG values of right erector spinae muscles were decreased as the work posture went to $90^{\circ}$ and those of left erector spinae muscles were increased until the asymmetry angle was $40^{\circ}$ but decreased continually over $40^{\circ}$. 7 subjects, activities of left and right latissimus dorsi muscles were maintained constantly, while for remainer, those were irregular. MVC reduced maximum 23% by type of handle. MVC was highest in straight posture, but was lowest in right angle posture. As a result of ANOVA, MVC paid attention to posture, coupling(p<0.01). To all handle types, biceps brachii activity was increased in right angle posture, but reduced in straight posture. Based on the results of this study, it is suggested that the NIOSH guideline should not be directly applied to Korean without reasonable reexamination. In addition, we need to afterward study through an age classification.

Shear mechanism of steel fiber reinforced concrete deep coupling beams

  • Li, Kou;Zhao, Jun;Ren, Wenbo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • Deep coupling beams are more prone to suffer brittle shear failure. The addition of steel fibers to seismic members such as coupling beams can improve their shear performance and ductility. Based on the test results of steel fiber reinforced concrete(SFRC) coupling beams with span-to-depth ratio between 1.5 and 2.5 under lateral reverse cyclic load, the shear mechanism were analyzed by using strut-and-tie model theory, and the effects of the span-to-depth ratio, compressive strength and volume fraction of steel fiber on shear strengths were also discussed. A simplified calculation method to predict the shear capacity of SFRC deep coupling beams was proposed. The results show that the shear force is mainly transmitted by a strut-and-tie mechanism composed of three types of inclined concrete struts, vertical reinforcement ties and nodes. The influence of span-to-depth ratio on shear capacity is mainly due to the change of inclination angle of main inclined struts. The increasing of concrete compressive strength or volume fraction of steel fiber can improve the shear capacity of SFRC deep coupling beams mainly by enhancing the bearing capacity of compressive struts or tensile strength of the vertical tie. The proposed calculation method is verified using experimental data, and comparative results show that the prediction values agree well with the test ones.

Design of a Broadband Single Balanced Diode Mixer Using a Vortical Coupling Structure (Vertical Coupling 구조를 이용한 광대역 단일 평형 다이오드 혼합기의 설계)

  • Lee Myeong-Gil;Yun Tae-Soon;Nam Hee;Lee Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.3 s.8
    • /
    • pp.45-50
    • /
    • 2005
  • In this paper, a broadband single balanced mixer is presented using a wideband rat-race implementation by vertical coupling. Frequency is selected as $1.5{\sim}3$ GHz for RF, $1.64{\sim}3.14$ GHz for LO, and 140 MHz for IF signals. When LO signal with 6 dBm at 2.7 GHz is injected, a conversion loss of 7.5 dB and RF to LO isolation of 30 dB are obtained. Also, an average conversion loss of 10 dB, RF to LO isolation of 30 dB, and LO to IF isolation of 45 dB are obtained for frequency band of $1.5{\sim}3$ GHz.

  • PDF