• Title/Summary/Keyword: Vertical/Horizontal Wind Turbine

Search Result 25, Processing Time 0.033 seconds

Characteristic analysis and experiment of axial flux type permanent magnet synchronous generator for small wind turbine (소형풍력발전 시스템용 축방향 자속형 영구자석 동기발전기의 특성해석과 실험)

  • You, Yong-Min;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.704_705
    • /
    • 2009
  • This paper presents a axial flux permanent magnet synchronous generator(AFPMSG), which is suitable for both vertical-axis and horizontal-axis wind turbine generation system. The design and construction features of the AFPMSG are reviewed. The characteristic analysis is performed such as cogging torque and e.m.f waveform, with the aid of a 3D finite element method. The experimental results confirm the characteristic analysis developed.

  • PDF

Experimental study of the loads induced by a large-scale tornado simulation on a HAWT model

  • Lopez, Juan P.;Hangan, Horia;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.437-446
    • /
    • 2021
  • As wind turbine rotors increase, the overall loads and dynamic response become an important issue. This problem is augmented by the exposure of wind turbines to severe atmospheric events with unconventional flows such as tornadoes, which need specific designs not included in standards and codes at present. An experimental study was conducted to analyze the loads induced by a tornado-like vortex (TLV) on horizontal-axis wind turbines (HAWT). A large-scale tornado simulation developed in The Wind Engineering, Energy and Environment (WindEEE) Dome at Western University in Canada, the so-called Mode B Tornado, was employed as the TLV flow acting on a rigid wind turbine model under two rotor operational conditions (idling and parked) for five radial distances. It was observed that the overall forces and moments depend on the location and orientation of the wind turbine system with respect to the tornado vortex centre, as TLV are three-dimensional flows with velocity gradients in the radial, vertical, and tangential direction. The mean bending moment at the tower base was the most important in terms of magnitude and variation in relation to the position of the HAWT with respect to the core radius of the tornado, and it was highly dependent on the rotor Tip Speed Ratio (TSR).

Experimental study of the loads induced by a large-scale tornado simulation on a HAWT model

  • Lopez, Juan P.;Hangan, Horia;El Damatty, Ashraf
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.303-312
    • /
    • 2022
  • As wind turbine rotors increase, the overall loads and dynamic response become an important issue. This problem is augmented by the exposure of wind turbines to severe atmospheric events with unconventional flows such as tornadoes, which need specific designs not included in standards and codes at present. An experimental study was conducted to analyze the loads induced by a tornado-like vortex (TLV) on horizontal-axis wind turbines (HAWT). A large-scale tornado simulation developed in The Wind Engineering, Energy and Environment (WindEEE) Dome at Western University in Canada, the so-called Mode B Tornado, was employed as the TLV flow acting on a rigid wind turbine model under two rotor operational conditions (idling and parked) for five radial distances. It was observed that the overall forces and moments depend on the location and orientation of the wind turbine system with respect to the tornado vortex centre, as TLV are three-dimensional flows with velocity gradients in the radial, vertical, and tangential direction. The mean bending moment at the tower base was the most important in terms of magnitude and variation in relation to the position of the HAWT with respect to the core radius of the tornado, and it was highly dependent on the rotor Tip Speed Ratio (TSR).

Analysis of Dynamic Response Characteristics for 5 MW Jacket-type Fixed Offshore Wind Turbine

  • Kim, Jaewook;Heo, Sanghwan;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.347-359
    • /
    • 2021
  • This study aims to evaluate the dynamic responses of the jacket-type offshore wind turbine using FAST software (Fatigue, Aerodynamics, Structures, and Turbulence). A systematic series of simulation cases of a 5 MW jacket-type offshore wind turbine, including wind-only, wave-only, wind & wave load cases are conducted. The dynamic responses of the wind turbine structure are obtained, including the structure displacement, rotor speed, thrust force, nacelle acceleration, bending moment at the tower bottom, and shear force on the jacket leg. The calculated time-domain results are transformed to frequency domain results using FFT and the environmental load with more impact on each dynamic response is identified. It is confirmed that the dynamic displacements of the wind turbine are dominant in the wave frequency under the incident wave alone condition, and the rotor thrust, nacelle acceleration, and bending moment at the bottom of the tower exhibit high responses in the natural frequency band of the wind turbine. In the wind only condition, all responses except the vertical displacement of the wind turbine are dominant at three times the rotor rotation frequency (considering the number of blades) generated by the wind. In a combined external force with wind and waves, it was observed that the horizontal displacement is dominant by the wind load. Additionally, the bending moment on the tower base is highly affected by the wind. The shear force of the jacket leg is basically influenced by the wave loads, but it can be affected by both the wind and wave loads especially under the turbulent wind and irregular wave conditions.

Safety Evaluation of the Combined Load for Offshore Wind Turbine Suction Foundation Installed on Sandy Soil (사질토 지반에 위치한 해상풍력발전기 석션기초의 복합하중에 대한 안전성 평가)

  • Park, Jeong Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.195-202
    • /
    • 2021
  • Offshore wind turbine (OWT) receive a combined vertical-horizontal- moment load by wind, waves, and the structure's own weight. In this study, the bearing capacity for the combined load of the suction foundation of OWT installed on the sandy soil was calculated by finite element analysis. In addition, the stress state of the soil around the suction foundation was analyzed in detail under the condition that a combined load was applied. Based on the results of the analyses, new equations are proposed to calculate the horizontal and moment bearing capacities as well as to define the capacity envelopes under general combined loads.

Starting Characteristics of Darrieus Wind Turbine (다리우스 풍력터빈 발전기의 기동특성)

  • Lee, Kyu-Yong;Lee, Woo-Suk;Seo, Young-Teak;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1018-1020
    • /
    • 2003
  • Wind-powered generator system converts wind energy into utilized electric energy. Wind power generator is classified into two categories, as horizontal or vertical axis turbine. The former is equipped with yawing mechanism which is subject to set the blade-face towards the wind direction. However, the latter does not need this mechanism, but this system needs a external power for starting. This paper deals with the method how to overcome such trouble and with the analysis of the starting characteristic and a field test with a prototype of the Darrieus wind generator was performed.

  • PDF

Vertical axis wind turbine types, efficiencies, and structural stability - A Review

  • Rehman, Shafiqur;Rafique, Muhammad M.;Alam, Md. Mahbub;Alhems, Luai M.
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.15-32
    • /
    • 2019
  • Much advancement has been made in wind power due to modern technological developments. The wind energy technology is the world's fastest-growing energy option. More power can be generated from wind energy by the use of new design and techniques of wind energy machines. The geographical areas with suitable wind speed are more favorable and preferred for wind power deployment over other sources of energy generation. Today's wind turbines are mainly the horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs). HAWTs are commercially available in various sizes starting from a few kilowatts to multi-megawatts and are suitable for almost all applications, including both onshore and offshore deployment. On the other hand, VAWTs finds their places in small and residential wind applications. The objective of the present work is to review the technological development, available sizes, efficiencies, structural types, and structural stability of VAWTs. Structural stability and efficiencies of the VAWTS are found to be dependent on the structural shape and size.

Experimental Study of Small Vertical Axis Wind Turbine according to Type of Blades (블레이드 형태에 따른 소형 수직축 풍력발전기의 실험적 연구)

  • Lee, Min-Gu;Oh, Hun;Park, Wal-Seo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.88-92
    • /
    • 2017
  • Owing to the depletion of fossil energy, wind power is attracting attention as a promising environmentally friendly alternative energy source, because it is abundant, renewable, and non-polluting. Wind turbines are divided into horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs) according to the direction of the rotating shaft. VAWTs have a low power generation efficiency, but are not affected by the wind direction and, thus, no yaw system is required and their structure is simple. Small VAWTs are attracting much attention because they can generate power even at low wind speeds. In this study, the output voltages and output currents of small VAWTs with gyromill type, hinge type and double door type blades capable of generating power even at low wind speeds were analyzed at variable wind speeds in the range of 1~11 m/s. At the maximum wind speed of 11m/s, the application of the double door type blades achieved 67% and 9% higher wind turbine output voltages than that of the gyromill type and hinge type blades, respectively. As regards the wind turbine output currents, the application of the double door type blades gave rise to 93% and 5% higher results than that of the gyromill type and hinge type blades, respectively. Through this study, the excellent output characteristics and commercialization potential of the double door type blades, which can generate power both at low and high wind speeds, were confirmed.

Behavior Analysis by Verticality Error of Monopile Foundation for 5MW Offshore Wind Turbine (5MW급 해상풍력발전기 모노파일 기초의 수직도 오차에 따른 거동 분석)

  • Jang, Hwa Sup;Kim, Ho Sun;Eum, Hark Jin;Kim, Mann Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.61-68
    • /
    • 2012
  • In general, verticality error necessarily occurs in marine pile foundation due to construction error or marine environmental effects. In marine structure, design by vertical load rather than horizontal load is dominant, but in the offshore wind turbine foundation, horizontal load is dominant. As the structure type that has dynamic movement by blade rotation, verticality error may have structurally significant effects. In this study, structural response feature of foundation and ground were analyzed according to verticality error of monopile foundation of 5MW offshore wind turbine. Marine environmental load was calculated per ISO standard and the margin of verticality error was calculated to be $L/{\infty}$(=0), L/300, L/200 and L/100. As a result of analysis, it was found that the maximum value of member force of the foundation with L/100 error increased about 7.2% compared to the monopile without verticality error.

Assessment of the potential for the design of marine renewable energy systems

  • Duthoit, Maxime;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.119-166
    • /
    • 2018
  • The assessment of the potential for the design of marine renewable energy systems is reviewed and the current situation for marine renewable energy is promising. The most studied forms of marine renewable energy are ocean wind energy, ocean wave energy and tidal energy. Wind turbine generators include mostly horizontal axis type and vertical axis type. But also more exotic ideas such as a kite design. Wave energy devices consist of designs converting wave oscillations in electric power via a power take off equipment. Such equipment can take multiple forms to be more efficient. Nevertheless, the technology alone cannot be the only step towards marine renewable energy. Many other steps must be overcome: policy, environment, manpower as well as consumption habits. After reviewing the current conditions of marine renewable energy development, the authors analyzed the key factors for developing a strong marine renewable energy industry and pointed out the huge potential of marine renewable energy.