• Title/Summary/Keyword: Vertex Normal Vector

Search Result 21, Processing Time 0.026 seconds

Geometry Image Optimization using a Normal Vector (정점의 법선벡터를 이용한 기하이미지의 최적화)

  • Park Jong-Lae;Yang Sung-Bong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.241-244
    • /
    • 2004
  • 일반적으로 메쉬(mesh)는 비정규 연결 형태(irregular connectivity)로 되어 있다. 리메싱(remeshing)은 비정규 연결 형태의 메쉬를 정규 연결 형태(regular connectivity)로 바꾸어 주는 작업이다. 메쉬의 기하 정보가 2D 그리드에 저장이 되어 있는 기하이미지(geometry Images)는 비정규 연결 형태의 메쉬를 완전 정규 형태(completely regular connectivity)로 리메싱하는 데 사용된다. 원본 메쉬를 기하 이미지로 생성하는 방법은 변형되는 크기를 최소화 하는 스트레치 메트릭(stretch metric)을 기반으로 이루어 졌다. 이 방법은 리메싱된 메쉬의 언더샘플링(undersampling)을 줄여 주게 된다. 하지만 리메싱 과정에서 생기는 오버샘플링(oversampling)은 줄여 주지 못한다. 본 논문에서는 정점(vertex)의 법선 벡터(normal vector)를 이용하여 기하이미지의 오버샘플링을 줄이는 방법을 제시한다.

  • PDF

Rendering of Sweep Surfaces using Programmable Graphics Hardware (그래픽스 하드웨어를 이용한 스윕 곡면의 렌더링)

  • Ko, Dae-Hyun;Yoon, Seung-Hyun;Lee, Ji-Eun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • We present an efficient algorithm for rendering sweep surfaces using programmable graphics hardware. A sweep surface can be represented by a cross-section curve undergoing a spline motion. This representation has a simple matrix-vector multiplication structure that can easily be adapted to programmable graphics hardware. The data for the motion and cross-section curves are stored in texture memory. The vertex processor considers a pair of surface parameters as a vertex and evaluates its coordinates and normal vector with a single matrix multiplication. Using the GPU in this way is between 10 and 40 times as fast as CPU-based rendering.

Photometry Data Compression for Three-dimensional Mesh Models Using Connectivity and Geometry Information (연결성 정보와 기하학 정보를 이용한 삼차원 메쉬 모델의 광학성 정보 압축 방법)

  • Yoon, Young-Suk;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.160-174
    • /
    • 2008
  • In this paper, we propose new coding techniques for photometry data of three-dimensional(3-D) mesh models. We make a good use of geometry and connectivity information to improve coding efficiency of color, normal vector, and texture data. First of all, we determine the coding order of photometry data exploiting connectivity information. Then, we exploit the obtained geometry information of neighboring vortices through the previous process to predict the photometry data. For color coding, the predicted color of the current vertex is computed by a weighted sum of colors for adjacent vortices considering geometrical characteristics between the current vortex and the adjacent vortices at the geometry predictor. For normal vector coding, the normal vector of the current vertex is equal to one of the optimal plane produced by the optimal plane generator with distance equalizer owing to the property of an isosceles triangle. For texture coding, our proposed method removes discontinuity in the texture coordinates and reallocates texture image segments according to the coding order. Simulation results show that the proposed compression schemes provide improved performance over previous works for various 3-D mesh models.

Simplification of 3D Polygonal Mesh Using Non-Uniform Subdivision Vertex Clustering (비균일 분할 정점 군집화를 이용한 3차원 다각형 메쉬의 단순화)

  • 김형석;박진우;김희수;한규필;하영호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1937-1945
    • /
    • 1999
  • In paper, we propose a 3D polygonal mesh simplification technique based on vertex clustering. The proposed method differentiates the size of each cluster according to the local property of a 3D object. We determine the size of clusters by considering the normal vector of triangles and the vertex distribution. The subdivisions of cluster are represented by octree. In this paper, we use the Harsdorff distance between the original mesh and the simplified one as a meaningful error value. Because proposed method adaptively determine the size of cluster according to the local property of the mesh, it has smaller error as compared with the previous methods and represent the small regions on detail. Also it can generate a multiresolution model and selectively refine the local regions.

  • PDF

NUMERICAL SIMULATION OF UNSTEADY VISCOUS FLOWS USING A GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 비정상 점성 유동 수치 모사)

  • Lee, H.D.;Jung, M.S.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.252-268
    • /
    • 2009
  • In the present study, a grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were simulated to demonstrate the robustness of the present grid deformation technique.

  • PDF

NUMERICAL ANALYSIS OF UNSTEADY VISCOUS FLOWS USING A FAST GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 신속 격자 변형 기법을 이용한 비정상 점성 유동 해석)

  • Lee, H.D.;Jung, M.S.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.33-48
    • /
    • 2009
  • In the present study, a fast grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were also simulated to demonstrate the robustness of the present grid deformation technique.

Measurement of Focal Length for Off-axis Optical Systems

  • Choe, Se-woon;Ryu, Jaemyung
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.402-408
    • /
    • 2021
  • An off-axis system refers to an optical system in which the optical axis and normal vector at the vertex of each surface do not match. The most important specification in an optical system is its focal length. Among the various methods for measuring the focal length, the most suitable method for the off-axis system is the method that adopts magnification. However, head-mounted display (HMD) optics must be measured while considering the virtual image distance, which is not infinity owing to product characteristics. For the virtual image distance, a camera with a focusing function was used. By measuring HMD optics via this magnification method, the error generated in this measurement was 0.68% of the HMD's focal length, which is within the 1%-3% range of the conventionally permitted design error for the focal length allowed at the optical design stage. Therefore, it can be verified that the measurement accuracy of the method proposed in this study is sufficiently feasible in practice.

preprocessing methodology to reducing calculation errors in 3 dimensional model for development of heat transfer analysis program for 3 dimensional structure of building (건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 3차원 모델의 해석 오류 저감을 위한 사전 수정 방법 연구)

  • Lee, Kyusung;Lee, Juhee;Lee, Yongjun
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2016
  • This study is part of three-dimensional(3D) heat transfer analysis program developmental process. The program is being developed without it's own built in 3D-modeller. So 3D-model must be created from another 3D-modeller such as generic CAD programs and imported to the developed program. After that, according to the 3D-geometric data form imported model, 3D-mesh created for numerical calculation. But the 3D-model created from another 3D-modeller is likely to have errors in it's geometric data such as mismatch of position between vertexes or surfaces. these errors make it difficult to create 3D-mesh for calculation. These errors are must be detected and cured in the pre-process before creating 3D-mesh. So, in this study four kinds of filters and functions are developed and tested. Firstly, 'vertex error filter' is developed for detecting and curing for position data errors between vertexes. Secondly, 'normal vector error filter' is developed for errors of surface's normal vector in 3D-model. Thirdly, 'intersection filter' is developed for extracting and creating intersection surface between adjacent objects. fourthly, 'polygon-line filter' is developed for indicating outlines of object in 3D-model. the developed filters and functions were tested on several shapes of 3D-models. and confirmed applicability. these developed filters and functions will be applied to the developed program and tested and modified continuously for less errors and more accuracy.

NUMERICAL STUDY OF VARIABLE GEOMETRY NOZZLE FLOW USING A MESH DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 가변노즐 유동 해석)

  • Kim, J.W.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 2013
  • In the present study, unsteady flow simulations of a variable geometry nozzle were conducted using a two-dimensional flow solver based on hybrid unstructured meshes. The variable geometry nozzle is used to achieve efficient performances of aircraft engines at various operating conditions. To describe the motion of the variable geometry nozzle, an algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements. A ball-vertex spring analogy was used for inviscid elements. The aerodynamic data were obtained for a range of nozzle pressure ratios, and the validations were made by comparing the present results with available experimental data. The unsteady nozzle flows were simulated with an oscillating diverging section and a converging-diverging section. It was found that the nozzle performances are influenced by the nozzle exit flow characteristics, mass flow rate, as well as unsteady effects. These unsteady effects are shown to behave differently depending on the frequency of the nozzle motion.

Mesh Simplification for Preservation of Characteristic Features using Surface Orientation (표면의 방향정보를 고려한 메쉬의 특성정보의 보존)

  • 고명철;최윤철
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.458-467
    • /
    • 2002
  • There has been proposed many simplification algorithms for effectively decreasing large-volumed polygonal surface data. These algorithms apply their own cost function for collapse to one of fundamental simplification unit, such as vertex, edge and triangle, and minimize the simplification error occurred in each simplification steps. Most of cost functions adopted in existing works use the error estimation method based on distance optimization. Unfortunately, it is hard to define the local characteristics of surface data using distance factor alone, which is basically scalar component. Therefore, the algorithms cannot preserve the characteristic features in surface areas with high curvature and, consequently, loss the detailed shape of original mesh in high simplification ratio. In this paper, we consider the vector component, such as surface orientation, as one of factors for cost function. The surface orientation is independent upon scalar component, distance value. This means that we can reconsider whether or not to preserve them as the amount of vector component, although they are elements with low scalar values. In addition, we develop a simplification algorithm based on half-edge collapse manner, which use the proposed cost function as the criterion for removing elements. In half-edge collapse, using one of endpoints in the edge represents a new vertex after collapse operation. The approach is memory efficient and effectively applicable to the rendering system requiring real-time transmission of large-volumed surface data.

  • PDF