• Title/Summary/Keyword: Verification and validation

Search Result 568, Processing Time 0.034 seconds

Study on Performance-based Evaluation Method for Rock Slopes : Deduction of Weight and Validation - Based on the AHP method and Correlation Analysis - (암반비탈면의 성능기반 평가기법 연구 : 가중치 도출 및 검증 - AHP 기법과 상관분석을 중심으로 -)

  • Lee, Jong Gun;Heo, In Young;Kang, Chang Kyu;Ryu, Ho Sang;Chang, Buhm Soo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2016
  • This study aims to suggest the detailed evaluation criteria based on performances for rock slopes. Using the previous research result, final evaluation items are proposed considering characteristics and similarities of each evaluation item. Weight for each evaluation item is deducted using AHP method, verification for suggested evaluation criteria is conducted based on correlation analysis. The research results as follows. All evaluation items have a high statistical correlation with final evaluation result(safety rating). Especially, items of the "rockfall", "ground deformation", "discontinuity characteristic", "instable lithology" were shown the highest in relative correlation coefficient(R), It is judged that items and weight presented in this study well reflect characteristics of rock slopes.

On Multiple ETA-based Test Framework to Enhance Safety Maturity of Live Fire Tests for Weapon Systems (무기체계 실사격 시험의 안전성 강화를 위한 다중 사건나무분석 기반의 시험구조에 관한 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Successful development of weapon systems requires a stringent verification and validation (V&V) process due to the nature of the weapons in which continual increase of operational capability makes the system requirements more complicated to meet. Thus, test and evaluation (T&E) of weapon systems is becoming more difficult. In such a situation, live fire tests appear to be effective and useful methods in not only carrying out V&V of the weapon systems under development, but also increasing the maturity of the end users operability of the system. However, during the process for live fire tests, a variety of accidents or mishaps can happen due to explosion, pyro, separation, and so on. As such, appropriate means to mitigate mishap possibilities should be provided and applied during the live fire tests. To study a way of how to accomplish it is the objective of this paper. To do so, top-level sources of hazard are first identified. A framework for T&E is also described. Then, to enhance the test range safety, it is discussed how test scenarios can be generated. The proposed method is based on the use of the anticipatory failure determination (AFD) and multiple event tree analysis (ETA) in analyzing range safety. It is intended to identify unexpected hazard components even in the environment with constraints. It is therefore expected to reduce accident possibilities as an alternative to the traditional root-cause analysis.

Conceptual Design of Cold Gas Propulsion System of a Ground Simulator for Maneuver and Attitude Control Design Verification of Spacecraft (우주비행체 기동 및 자세제어 설계 검증을 위한 지상 시뮬레이터용 냉가스 추진시스템의 개념설계)

  • Kim, Jae-Hoon;Lee, Kyun Ho;Hong, Sung Kyung;Kim, Hae-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.98-110
    • /
    • 2015
  • Recently, a validation research of maneuvering and attitude control logics of a spacecraft under a ground condition is getting increase by using operating simulators with compact and precise components. For that, a cold gas propulsion system is generally used for maneuvering and attitude control of spacecraft ground simulators for its simplicity and a high reliability. In the present study, major design parameters of a cold gas propulsion system are derived to meet mission requirements based on conceptual design results of a simulator. And additionally, commercial components with proper specifications are selected for system assembly.

A Study on the Development of Test Facility for Safety System Software V/V in Nuclear Power Plant (원자력발전소 안전계통 소프트웨어의 확인/검증을 위한 시험장치 개발에 관한 연구)

  • Lee, Sun-Sung;Suh, Young;Moon, Chae-Joo
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.96-102
    • /
    • 1998
  • The use of computers as part of nuclear safety systems elicits additional requirements-software verification and validation (v/v), hardware qualification-not specifically addressed in general industry fields. The computer used in nuclear power plants is a system that includes computer hardware, software, firmware, and interfaces. To develop the computer systems graded with nuclear safety class, the developing environments have to be required in advance and the developed software have to be verified and validated in accordance with nuclear code and standards. With this requirements, the test facility for Inadequate Core Cooling Monitoring System (ICCMS) as one of safety systems in the nuclear power plants was developed. The test facility consists of three(3) parts such as Input/Output (I/O) simulator, Plant Data Acqusition System (PDAS) cabinets and supervisory computer. The performance of the system was validated by manual test procedure.

  • PDF

Development of Switching System for Flight Control Law (비행제어법칙 전환시스템 개발)

  • Ahn, Jong-Min;Im, Sang-Soo;Kwon, Jong-Kwang;Choi, Sup;Lee, Yong-Pyo;Ko, Joon-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.712-718
    • /
    • 2008
  • This paper deals with a development of flight control law switching system which can be used for flight test of the research control law by switching control law during flight. Through this research program, fader logic and integrator stabilization design has been introduced to minimize the transient response of aircraft caused by flight control law switching and to prevent the divergence of the integrator included in the control law in standby mode. MIL-STD-1553B communication was applied to transfer the data between the two control laws. This paper introduce the control law switching system architecture and major design concept and include the system verification and validation result performed on the flying quality simulator of the advanced trainer.

An Empirical Study on Tracking Table for Consistency and Completeness Validation in the Outputs (산출물의 일관성과 완전성 검증을 위한 추적테이블의 경험적 연구)

  • Kim, Ju-Young;Rhew, Sung-Yul
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.5
    • /
    • pp.419-430
    • /
    • 2007
  • It is very important to track whether software is properly developed according to requirements. This study suggests a method to track requirements by using a tracking table. In this study, the tracking table indicates why such requirements are included by detailing the content of requests for proposals and proposals. The table also facilitates verification of the consistency between outputs and the integrity by having ID codes of each requirement mapped to each output. Furthermore, as this study was conducted, it was found that some factors were required to be added or supplemented to the outputs at the requirement gathering stage of MaRMI-Ⅲ v.4.0 methodology. Thus, this study seeks to present this additional result along with the enhanced tracking table. By verifying outputs, the tracking table presented in this study will help to reduce all kinds of risks and problems that may occur in software development due to the lack of management of requirements. In addition, the output of the requirement-gathering stage of MaRMI-Ⅲ v.4.0 methodology will be improved/supplemented according to the creation of tracking tables; this will increment the applicability of the MaRMI-III methodology.

Link-level Performance Verification of the Multiple Antenna Systems - MIMO OFDM vs. Smart Antenna OFDM (OFDM 기반 다중 안테나 시스템의 링크레벨 성능검증 - MIMO OFDM vs. Smart Antenna OFDM)

  • Park Sung-Ho;Kim Kyoo-Hyun;Heo Joo;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.563-574
    • /
    • 2006
  • This paper implements SCM(Spatial Channel Model), a kind of ray-tracing method which has characteristics similar to realistic wave propagation environments, for link-level performance analysis of OFDM(Orthogonal Frequency Division Multiplexing) based multiple antenna systems. The SCM is proposed by 3GPP & 3GPP2 Spatial Channel AHG(Ad-hoc Group) for system-level performance validation. In this paper, we modify the system level parameters and channel coefficient of SCM to compare the link-level performances of OFDM based multiple antenna systems. Through computer simulations, we manifest the implemented SCM channel characteristics. We analyze a realistic link-level performance of OFDM based conventional MIMO(Multiple Input Multiple Output) system and smart antenna system in the implemented channel. We also include the link-level performance of OFDM based multiple antenna systems in I-METRA(Intelligent Multi Element Transmit and Receive Antenna) and independent channel environments with the same system parameters. We suggest appropriate multiple antenna system in the given environment by comparing the link-level performance in the spatial channels that have different channel correlation values.

A Study on the Optimal Welding Condition for Root-Pass in Horizontal Butt-Joint TIG Welding (수평자세 맞대기 TIG 초층용접에서 최적용접조건의 선정에 관한 연구)

  • Jung, Sung Hun;Kim, Jae-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.321-327
    • /
    • 2017
  • In this study, to investigate the shape of the back bead as a weld quality parameter and to select the optimal condition of the root-pass TIG welding of a horizontal butt-joint, an experimental design and the response surface method (RSM) have been employed. Three parameters are used as input variables, which include the base current, peak current, and welding speed. The back bead width is selected as an output variable representing the weld quality, the target value of the width is 5.4 mm. Conducting the experiments according to the Box-Behnken experimental design, a $2^{nd}$ regression model for the back bead width was made, and the validation of the model was confirmed by using the F-test. The desirability function was designed through the nominal-the-best formula for the appropriate back bead width. Finally, the following optimal condition for welding was selected using the RSM: base current of 0.9204, peak current of 0.8676, and welding speed of 0.3776 in coded values. For verification, a test welding process under the optimal condition was executed and the result showed the back bead width of 5.38 mm that matched the target value well.

ToyLotos/Ada : Object-Behavior Simulation System for Developing a Real-time Ada Software (ToyLotos/Ada : 실시간 Ada 소프트웨어 개발을 위한 객체행위 시뮬레이션 시스템)

  • Lee, Gwang-Yong;O, Yeong-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1789-1804
    • /
    • 1999
  • This paper presents a simulation-based system for verification and validation(V&V) of design implication of the Visual Real-time Object Model which is produced by existing object's behavior design method. This system can simulate the dynamic interactions using the executable Ada simulation machine, and can detect various logical and temporal problems in the visual real-time object model prior to the real implementation of the application systems. Also, the system can generate the Ada prototype code from the validated specification. This system is implemented by Visual C++ version 4.2. For simulation, this system is using the Ada language because Ada's real-time expression capabilities such as concurrent processes, rendezvous, temporal behavior expression, and etc, are competent compared to other languages. This work contributes to a tightly coupling of methodology-based visual models and formal-based simulation systems, and also contributes to a realization of automated specification V&V.

  • PDF

Verification of Mid-/Long-term Forecasted Soil Moisture Dynamics Using TIGGE/S2S (TIGGE/S2S 기반 중장기 토양수분 예측 및 검증)

  • Shin, Yonghee;Jung, Imgook;Lee, Hyunju;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Developing reliable soil moisture prediction techniques at agricultural regions is a pivotal issue for sustaining stable crop productions. In this study, a physically-based SWAP(Soil-Water-Atmosphere-Plant) model was suggested to estimate soil moisture dynamics at the study sites. ROSETTA was also integrated to derive the soil hydraulic properties(${\alpha}$, n, ${\Theta}_r$, ${\Theta}_s$, $K_s$) as the input variables to SWAP based on the soil information(Sand, Silt and Clay-SSC, %). In order to predict the soil moisture dynamics in future, the mid-term TIGGIE(THORPEX Interactive Grand Global Ensemble) and long-term S2S(Subseasonal to Seasonal) weather forecasts were used, respectively. Our proposed approach was tested at the six study sites of RDA(Rural Development Administration). The estimated soil moisture values based on the SWAP model matched the measured data with the statistics of Root Mean Square Error(RMSE: 0.034~0.069) and Temporal Correlation Coefficient(TCC: 0.735~0.869) for validation. When we predicted the mid-/long-term soil moisture values using the TIGGE(0~15 days)/S2S(16~46 days) weather forecasts, the soil moisture estimates showed less variations during the TIGGE period while uncertainties were increased for the S2S period. Although uncertainties were relatively increased based on the increased leading time of S2S compared to those of TIGGE, these results supported the potential use of TIGGE/S2S forecasts in evaluating agricultural drought. Our proposed approach can be useful for efficient water resources management plans in hydrology, agriculture, etc.