KSII Transactions on Internet and Information Systems (TIIS)
/
제16권11호
/
pp.3738-3760
/
2022
Due to increasing spectrum demand for new wireless devices applications, cooperative spectrum sensing (CSS) paradigm is the most promising solution to alleviate the spectrum shortage problem. However, in the interweave cognitive radio (CR) system, the inherent nature of CSS opens a hole to Byzantine attack, thereby resulting in a significant drop of the CSS security and efficiency. In view of this, a weighted differential sequential single symbol (WD3S) algorithm based on MATLAB platform is developed to accurately identify malicious users (MUs) and benefit useful sensing information from their malicious reports in this paper. In order to achieve this, a dynamic Byzantine attack model is proposed to describe malicious behaviors for MUs in an interweave CR system. On the basis of this, a method of data transmission consistency verification is formulated to evaluate the global decision's correctness and update the trust value (TrV) of secondary users (SUs), thereby accurately identifying MUs. Then, we innovatively reuse malicious sensing information from MUs by the weight allocation scheme. In addition, considering a high spectrum usage of primary network, a sequential and differential reporting way based on a single symbol is also proposed in the process of the sensing information submission. Finally, under various Byzantine attack types, we provide in-depth simulations to demonstrate the efficiency and security of the proposed WD3S.
In this study, we propose a technique to automatically generate transfer documents using sensor data from livestock manure transfer systems. The research involves analyzing sensor data and applying machine learning techniques to derive optimized outcomes for livestock manure transfer documents. By comparing and contrasting with existing documents, we present a method for automatic document generation. Specifically, we propose the utilization of Gradient Boosting, a machine learning algorithm. The objective of this research is to enhance the efficiency of livestock manure and liquid byproduct management. Currently, stakeholders including producers, transporters, and processors manually input data into the livestock manure transfer management system during the disposal of manure and liquid byproducts. This manual process consumes additional labor, leads to data inconsistency, and complicates the management of distribution and treatment. Therefore, the aim of this study is to leverage data to automatically generate transfer documents, thereby increasing the efficiency of livestock manure and liquid byproduct management. By utilizing sensor data from livestock manure and liquid byproduct transport vehicles and employing machine learning algorithms, we establish a system that automates the validation of transfer documents, reducing the burden on producers, transporters, and processors. This efficient management system is anticipated to create a transparent environment for the distribution and treatment of livestock manure and liquid byproducts.
With the increasing number of aging buildings across Korea, emerging maintenance technologies have surged. One such technology is the non-contact detection of concrete cracks via thermal images. This study aims to develop a technique that can accurately predict the depth of a crack by analyzing the temperature difference between the crack part and the normal part in the thermal image of the concrete. The research obtained temperature data through thermal imaging experiments and constructed a big data set including outdoor variables such as air temperature, illumination, and humidity that can influence temperature differences. Based on the collected data, the team designed an algorithm for learning and predicting the crack depth using machine learning. Initially, standardized crack specimens were used in experiments, and the big data was updated by specimens similar to actual cracks. Finally, a crack depth prediction technology was implemented using five regression analysis algorithms for approximately 24,000 data points. To confirm the practicality of the development technique, crack simulators with various shapes were added to the study.
Purpose: The purpose of this study is to propose an optimization process to improve product yield in the process using process data. Recently, research for low-cost and high-efficiency production in the manufacturing process using machine learning or deep learning has continued. Therefore, this study derives major variables that affect product defects in the manufacturing process using eXplainable Artificial Intelligence(XAI) method. After that, the optimal range of the variables is presented to propose a methodology for improving product yield. Methods: This study is conducted using the injection molding machine AI dataset released on the Korea AI Manufacturing Platform(KAMP) organized by KAIST. Using the XAI-based SHAP method, major variables affecting product defects are extracted from each process data. XGBoost and LightGBM were used as learning algorithms, 5-6 variables are extracted as the main process variables for the injection process. Subsequently, the optimal control range of each process variable is presented using the ICE method. Finally, the product yield improvement methodology of this study is proposed through a validation process using Test Data. Results: The results of this study are as follows. In the injection process data, it was confirmed that XGBoost had an improvement defect rate of 0.21% and LightGBM had an improvement defect rate of 0.29%, which were improved by 0.79%p and 0.71%p, respectively, compared to the existing defect rate of 1.00%. Conclusion: This study is a case study. A research methodology was proposed in the injection process, and it was confirmed that the product yield was improved through verification.
전자전 상황에서 수신기의 수집 변수를 토대로 RF 위협체를 역추적함으로서 효율적인 전자공격을 수행하려는 연구가 진행되고 있다. 본 논문에서는 다양하고 구체적인 전자전 상황에서 위협체 역추적 알고리즘의 성능을 검증할 수 있도록 하기 위하여, 전자파 수집 변수를 바탕으로 레이더 위협체, 전자전 수신기, 전자파 전송환경과 같은 전자전 구성 단위들의 기능을 모델링하여 전자전 송수신 시뮬레이터를 구축한다. 시뮬레이터의 실험 결과는 수 m 정도의 거리 추적 오차와 소수점 이하 크기의 각도 추적 오차를 보이며, 모노펄스 빔폭과 편각의 변화에 따른 각도 추적 오차의 변화가 이론적인 모델링의 결과와 동일한 양상을 보임으로써 레이더 위협체의 거리 및 각도 추적의 동작 원리가 시뮬레이터에 적절하게 반영되었음을 확인할 수 있다. 구축한 전자전 송수신 시뮬레이터는 전자전 수집 시스템에서 추출된 위협체의 특성 변수가 실제 위협체의 특성 변수에서 어떻게 변형되었는지를 관찰하고, 다양한 전자전 상황에서 수집된 변수를 토대로 구성한 위협체 역추적 시스템의 성능을 평가하는 데에 활용될 수 있다.
소양강댐 유역의 관측유입량과 융설 모의의 포함 유무에 따른 모의 결과를 비교함으로써 적설 및 융설 모형의 필요성을 분석하였다. 사용한 융설 모형은 Sugawara 등의 개념적 융설 모형이고, 강우-유출 모형은 NWS-PC를 사용하였다. 모형의 매개변수는 다단계 자동보정법에 의해 추정하였고, 각 단계별로 SCE-UA 알고리즘에 의해 최적화되었다. 매개변수 추정시와 검증 모의에서 RMSE, PBIAS, NSE, PME 통계량은 융설을 포함한 모의가 그렇지 않은 모의보다 좋은 결과를 나타내었다. 소양강댐의 관측유입량은 약 두 달 이상의 자기상관성을 나타내었고, 융설을 포함하지 않은 경우에 모의된 유량시계열은 20일 정도의 자기상관성을 나타내었다. 융설을 포함한 경우의 모의유량 시계열은 관측 유량시계열과 유사하게 약 두 달 이상의 자기상관성을 나타내었다. 이와 같은 결과로 소양강댐 유역의 강우-유출 모의시 적설 및 융설 모형을 포함하여야 모형의 정확성을 향상시킬 수 있다.
The Real-time Analysis for Particle-transport and In-situ Detection (RAPID) Code System, developed based on the Multi-stage Response-function Transport (MRT) methodology, enables real-time simulation of nuclear systems such as reactor cores, spent nuclear fuel pools and casks, and sub-critical facilities. This paper presents the application of a novel fission matrix-based burnup methodology to the well-characterized JSI TRIGA Mark II research reactor. This methodology allows for calculation of nuclear fuel depletion by combination and interpolation of RAPID's burnup dependent fission matrix (FM) coefficients to take into account core changes due to burnup. The methodology is compared to experimentally validated Serpent-2 Monte Carlo depletion calculations. The results show that the burnup methodology for RAPID (bRAPID) implemented into RAPID is capable of accurately calculating the keff burnup changes of the reactor core as the average discrepancies throughout the whole burnup interval are 37 pcm. Furthermore, capability of accurately describing 3D fission source distribution changes with burnup is demonstrated by having less than 1% relative discrepancies compared to Serpent-2. Good agreement is observed for axially and pin-wise dependent fuel burnup and nuclear fuel nuclide composition as a function of burnup. It is demonstrated that bRAPID accurately describes burnup in areas with high gradients of neutron flux (e.g. vicinity of control rods). Observed discrepancies for some isotopes are explained by analyzing the neutron spectrum. This paper presents a powerful depletion calculation tool that is capable of characterization of spent nuclear fuel on the fly while the reactor is in operation.
The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.
In order to various service types of real time and non-real time traffic with varying requirements are transmitted over the IEEE 802.16 standard is expected to provide quality of service(QoS) researchers have explored to provide a queue management scheme with differentiated loss guarantees for the future Internet. The sides of a packet drop rate, an each class to differential drop probability on achieving a low delay and high traffic intensity. Improved a queue management scheme to be enhanced to offer a drop probability is desired necessarily. This paper considers multiple random early detection with differential drop probability which is a slightly modified version of the Multiple-RED(Random Early Detection) model, to get the performance of the best suited, we analyzes its main control parameters (maxth, minth, maxp) for achieving the proportional loss differentiation (PLD) model, and gives their setting guidance from the analytic approach. we propose Dynamic-multiple queue management scheme based on differential drop probability, called Dynamic-VQSDDP(Variable Queue State Differential Drop Probability)T, is proposed to overcome M-RED's shortcoming as well as supports static maxp parameter setting values for relative and each class proportional loss differentiation. M-RED is static according to the situation of the network traffic, Network environment is very dynamic situation. Therefore maxp parameter values needs to modify too to the constantly and dynamic. The verification of the guidance is shown with figuring out loss probability using a proposed algorithm under dynamic offered load and is also selection problem of optimal values of parameters for high traffic intensity and show that Dynamic-VQSDDP has the better performance in terms of packet drop rate. We also demonstrated using an ns-2 network simulation.
본 논문에서는 스마트 그리드 배전 계통에서 선로상의 고장으로부터 계통을 보호하기 위한 인공 신경 회로망을 기반으로 하는 고장 판단 방법론을 제안하였다. 제안된 방법론에서는 먼저 전류 실효값 크기를 기반으로 일반 고장 여부를 판단하고 다음, 정상 전류로 판단되는 경우 인공 신경 회로망을 기반으로 하는 normal/HIF classifier를 이용하여 고 임피던스 지락 고장 여부를 판단하도록 설계하였다. 반복적인 DSP 모듈 기반 알고리즘 검증 시험들 중에서, 실효 값 크기가 최소 동작전류보다 작은 정상 전류 파형 시험인 경우에 normal/HIF classifier가 전류 파형을 정상상태로 인식하여 부 동작하였으며, 반면에, 저 임피던스 고장의 경우는 고장 상태로 인식하여 정해진 절차에 따라 재폐로 동작을 보임으로써 제안된 방법론의 유효성을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.