• 제목/요약/키워드: Verb Prediction

검색결과 4건 처리시간 0.016초

언어장애인용 문장발생장치에 적용 가능한 동사예측 (An Applicable Verb Prediction in Augmentative Communication System for Korean Language Disorders)

  • 이은실;홍승홍;민홍기
    • 감성과학
    • /
    • 제3권1호
    • /
    • pp.25-32
    • /
    • 2000
  • 본 논문에서는 언어장애인용 문장발생장치의 통신율을 증진시키기 위한 처리방안으로 신경망을 이용하여 문장발생장치에 동사예측을 적용하는 방법을 제안하였다. 각 단어들은 구문론과 의미론에 따른 정보벡터로 표현되며, 언어처리는 전통적으로 사전을 포함하는 것과는 달리, 상태공간에서 다양한 영역으로 분류되어 개념적으로 유사한 단어는 상태공간에서의 위치를 통하여 알게 된다. 사용자가 심볼을 누르면 심볼에 해당하는 단어는 상태공간에서의 위치를 찾아가며, 신경망 학습을 통해 동사를 예측하였고 그 결과 제한된 공간 내에서 약 20% 통신율 증진을 가져올 수 있었다.

  • PDF

신경망을 이용한 언어장애인용 문장발생장치의 동사예측 (Verb Prediction for Korean Language Disorders in Augmentative Communicator using the Neural Network)

  • 이은실;민흥기;흥승홍
    • 융합신호처리학회논문지
    • /
    • 제1권1호
    • /
    • pp.32-41
    • /
    • 2000
  • 본 논문에서는 언어장애인용 문장발생장치의 통신율을 증진시키기 위한 처리방안으로 신경망을 이용하여 문장발생장치에 통사예측을 적용하는 방법을 제안하고 유용성을 확인하였다. 각 단어들은 구문론과 의미론에 따른 정보벡터로 표현되었으며 언어처리는 전통적으로 사전을 포함하는 방법과는 다르게 상태공간에서 다양한 영역으로 분류되어 개념적으로 유사한 단어는 상태공간에서의 위치를 통하여 알게 된다. 사용자가 의미심볼을 누르면 의미심볼에 해당하는 단어는 상태공간에서의 위치를 찾아가며 입력에 따른 동사예측의 중복성을 막기 위하여 신경망을 이용하여 클래스화한 후 동사를 예측하였고 그 결과 제한된 공간 내에서 약 $20\%$ 통신율 증진을 가져올 수 있었다.

  • PDF

국민청원 주제 분석 및 딥러닝 기반 답변 가능 청원 예측 (Topic Analysis of the National Petition Site and Prediction of Answerable Petitions Based on Deep Learning)

  • 우윤희;김현희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권2호
    • /
    • pp.45-52
    • /
    • 2020
  • 청와대 국민 청원 사이트가 개설된 이래로 많은 관심을 받고 있다. 본 논문에서는 국민 청원의 주제를 분석하고 딥러닝을 활용하여 답변 가능한 청원을 예측하는 모델을 제안하였다. 먼저, 추천순으로 1,500개의 청원글을 수집하였고, K-means 클러스터링을 적용하여 청원글을 군집하여 대주제를 정의하고, 보다 구체적인 세부 주제를 정의하기 위히여 토픽 모델링을 실시하였다. 다음으로는 LSTM을 활용한 답변 가능한 청원 예측 모델을 생성하여, 20만의 청원동의를 얻는 청원을 예측하기 위한 모델을 개발하였다. 이를 위해 글의 주제와 본문뿐만 아니라 글의 길이, 카테고리, 특정 품사의 비율이 영향을 미칠 수 있는지를 살펴보았다. 그 결과, 본문과 함께 글의 길이, 카테고리, 체언, 용언, 독립언, 수식언의 품사의 비율을 변수로 추가한 모델의 f1-score가 0.9 이상으로 글의 제목과 본문을 변수로 하는 모델보다 예측력이 높음을 알 수 있었다.

영역별 맞춤형 감성사전 구축을 통한 영화리뷰 감성분석 (Sentiment analysis on movie review through building modified sentiment dictionary by movie genre)

  • 이상훈;최정;김종우
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.97-113
    • /
    • 2016
  • 인터넷상의 데이터가 급속하게 증가함에 따라 막대한 양의 데이터를 목적에 맞게 적절히 활용하는 빅데이터 분석이 활발하게 진행되고 있다. 최근에는 기존의 정형 데이터분석이 가진 한계점을 보완하는 방법으로 비정형 데이터 분석 분야 중 하나인 텍스트마이닝 기법에 대한 연구들이 다수 이루어지고 있으며, 특히 텍스트를 기반으로 문장의 긍정, 부정을 판별하고 분류하는 감성분석과 관련된 연구들이 활발하게 이루어지고 있다. 이러한 연구의 연장선 상에서, 본 연구는 감성분석에 사용되는 감성사전을 데이터의 특성에 맞게 적절하게 변형하여 구축하는 방법을 시도하였다. 데이터가 속한 영역의 특성을 고려하지 않은 기존의 범용 감성사전을 감성분석에 사용할 경우, 해당 영역에서 쓰이는 단어 또는 감정 표현을 반영하지 못하므로 감성분석의 정확성이 떨어질 수 있다. 따라서 감성분석에 있어서 영역 맞춤형 감성사전의 사용 시 데이터 영역의 특성을 정확하게 반영해 분석의 정확성을 높여줄 것으로 기대할 수 있다. 본 연구에서는 영화 리뷰 데이터를 분석 대상으로 선정하였으며, 대표적 영화정보 사이트 IMDb에서 발생된 약 2년간의 영화리뷰 데이터를 수집 분석하였다. 분석에 앞서 영화 장르별 사용되는 단어의 의미가 각각 다를 것을 고려하여 영화를 '액션', '애니메이션', '코메디', '드라마', '공포', '과학공상' 6개 장르로 분류했다. 맞춤형 감성사전 구축을 위한 핵심 기법으로 SO-PMI(Semantic Orientation from Point-wise Mutual Information)를 활용하였으며, 어휘 간 극성이 뚜렷하게 구분되는 형용사에 한정하여 연구를 진행했다. 분석결과 맞춤형사전을 활용한 감성분석 예측정확도는 영화 장르별로 상이했다. '애니메이션'을 제외한 5개 장르에서 기존의 범용 감성사전대비 맞춤형 감성사전의 예측정확도가 통계적으로 유의한 수준의 성능 향상을 보였다. 본 연구에서는 데이터 영역의 특성에 맞는 맞춤형 사전 구축을 통한 감성분석의 예측의 성능 향상을 확인하였다. 향후 감성사전 구축 시 동사, 부사 등 다양한 품사의 어휘를 추가하여 감성분석 예측정확도를 높이는 방안을 모색할 수 있을 것이다.