• Title/Summary/Keyword: Venus flytrap

Search Result 2, Processing Time 0.015 seconds

Soft Morphing Motion of Flytrap Robot Using Bending Propagating Actuation (밴딩 전파 구동을 이용한 파리지옥 로봇의 소프트 모핑 동작)

  • Kim, Seung-Won;Koh, Je-Sung;Cho, Maeng-Hyo;Cho, Kyu-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.168-174
    • /
    • 2012
  • This paper presents a bending propagating actuation using SMA (Shape Memory Alloy) spring for an effective shape transition of a flytrap-inspired soft morphing structure. The flytrap-inspired soft morphing structure is made from unsymmetric CFRP (Carbon Fiber Reinforced Prepreg) structure which shows bi-stability and snap-through phenomenon. For a thin and large curved bistable CFRP structure, SMA spring is more acceptable than SMA wire and piezoelectric actuator which used in previous investigations. A bending propagating actuation is proposed which can induce snap-through of the bi-stable CFRP structure effectively. From this research, effective shape transition of soft morphing structure is possible.

Development of Variable Stiffness Soft Robot Hand for Improving Gripping Performance (그리핑 성능 향상을 위한 가변강성 소프트 로봇 핸드 개발)

  • Ham, KiBeom;Jeon, JongKyun;Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.47-53
    • /
    • 2018
  • Various types of robotic arms are being used for industrial purposes, particularly with the small production of multi-products, and the importance of the gripper, which can be used in industrial fields, is increasing. This study evaluated a variable stiffness mechanism gripper that can change the stiffness using the nonlinearity of a flexible material. A prototype of the gripper was fabricated and examined to confirm the change in stiffness. The previous gripper was unable to grip objects in some situations with three variable stiffness mechanism. In addition, these mechanisms were not balanced and rarely rotated when the object was gripped. Therefore, a new type of gripper was needed to solve this problem. Inspired by the movements of the human palm and Venus Flytrap, a new type of a variable stiffness soft robot hand was designed. The possibility of grasping could be increased by interlocking the palm folding mechanism by pulling the tendon attached to the variable stiffness mechanism. The soft robotic hand was used to grasp objects of various shapes and weights more stably than the previous variable stiffness mechanism gripper. This new variable stiffness soft robot hand can be used selectively depending on the application and environment to be used.