• Title/Summary/Keyword: Ventrolateral prefrontal cortex

Search Result 6, Processing Time 0.022 seconds

Increased Ventrolateral Prefrontal Cortex Activation during Accurate Eyewitness Memory Retrieval: An Exploratory Functional Near-Infrared Spectroscopy Study (목격 여부에 따른 배가쪽 이마앞 영역의 활성화 차이: Functional Near-Infrared Spectroscopy Study 연구)

  • Ham, Keunsoo;Kim, Ki Pyoung;Jeong, Hojin;Yoo, Seong Ho
    • The Korean Journal of Legal Medicine
    • /
    • v.42 no.4
    • /
    • pp.146-152
    • /
    • 2018
  • We investigated the neural correlates of accurate eyewitness memory retrieval using functional near-infrared spectroscopy. We analyzed oxygenated hemoglobin ($HbO_2$) concentration in the prefrontal cortex during eyewitness memory retrieval task and examined regional $HbO_2$ differences between observed objects (target) and unobserved objects (lure). We found that target objects elicited increased activation in the bilateral ventrolateral prefrontal cortex, which is known for monitoring retrieval processing via bottom-up attentional processing. Our results suggest bottom-up attentional mechanisms could be different during accurate eyewitness memory retrieval. These findings indicate that investigating retrieval mechanisms using functional near-infrared spectroscopy might be useful for establishing an accurate eyewitness recognition model.

Injury of the Thalamocortical Pathway Between the Mediodorsal Nuclei and the Prefrontal Cortex in a Patient with Traumatic Brain Injury

  • Sang Seok Yeo
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.6
    • /
    • pp.190-194
    • /
    • 2023
  • Purpose: Traumatic brain injury (TBI) refers to brain damage caused by external forces or trauma. TBIs can vary in severity and result from accidents, falls, sports injuries, assaults, or other forms of physical trauma. The prefrontal cortex (PFC) is known have roles in various cognitive functions. We report on a patient with traumatic brain injury who showed prefrontal symptoms after injury of thalamocortical connections between mediodorsal nuclei (MD) of thalamus and PFC. Methods: A 54-year-old, male patient suffered a TBI as a result of a heavy object falling on his head. After onset of TBI, he showed typical symptoms of prefrontal lobe injury, including personality changes, memory impairment, and general cognition problem. The thalamocortical connections between MD and PFC (ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal cortex (DLPFC), and obrbitofrontal cortex (OFC)) were reconstructed using diffusion tensor tractography. In terms of fractional anisotropy value, the right thalamocortical connections to the OFC were significantly lower than those of control subjects. Results: The value of mean diffusivity in the right thalamocortical connections to the DLPFC was significantly higher than that of control subjects. By contrast, both VLPFC and left OFC showed significant decrement in the tract volume of thalamocortical connections compared with that of control subjects. Conclusion: We reported on a patient who showed cognitive and neuropsychiatric impairment due to global injury of the thalamocoritcal connections between MD and PFC following TBI.

Prefrontal Cortex Activation during Diaphragmatic Breathing in Women with Fibromyalgia: An fNIRS Case Report

  • Hyunjoong Kim;Jihye Jung;Seungwon Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.334-339
    • /
    • 2023
  • Objective: The present study is designed to delve deeper into the realm of fibromyalgia (FM) symptom management by investigating the effects of diaphragmatic breathing on the prefrontal cortex (PFC) in women diagnosed with FM. Using functional near-infrared spectroscopy (fNIRS), the study aims to capture real-time PFC activation patterns during the practice of diaphragmatic breathing. The overarching objective is to identify and understand the underlying neural mechanisms that may contribute to the observed clinical benefits of this relaxation technique. Design: A case report Methods: To achieve this, a twofold approach was adopted: First, the patient's breathing patterns were meticulously examined to detect any aberrations. Following this, fNIRS was employed, focusing on the activation dynamics within the PFC. Results: Our examination unveiled a notable breathing pattern disorder inherent to the FM patient. More intriguingly, the fNIRS analysis offered compelling insights: the ventrolateral prefrontal cortex (VLPFC) displayed increased activation. In stark contrast, regions of the anterior prefrontal cortex (aPFC) and orbitofrontal cortex (OFC) manifested decreased activity, especially when benchmarked against typical activations seen in healthy adults. Conclusions: These findings, derived from a nuanced examination of FM, underscore the condition's multifaceted nature. They highlight the imperative to look beyond conventional symptomatology and appreciate the profound neurological and physiological intricacies that define FM.

The Upper Ascending Reticular Activating System between Intralaminar Thalamic Nuclei and Cerebral Cortex in the Human Brain

  • Jang, Sungho;Kwak, Soyoung
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.3
    • /
    • pp.109-114
    • /
    • 2017
  • Purpose: The ascending reticular activating system (ARAS) is responsible for regulation of consciousness. In this study, using diffusion tensor imaging (DTI), we attempted to reconstruct the thalamocortical projections between the intralaminar thalamic nuclei and the frontoparietal cortex in normal subjects. Methods: DTI data were acquired in 24 healthy subjects and eight kinds of thalamocortical projections were reconstructed: the seed region of interest (ROI) - the intralaminar thalamic nuclei and the eight target ROIs - the medial prefrontal cortex, dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, orbitofrontal cortex, premotor cortex, primary motor cortex, primary somatosensory cortex, and posterior parietal cortex. Results: The eight thalamocortical projections were reconstructed in each hemisphere and the pathways were visualized: projections to the prefrontal cortex ascended through the anterior limb and genu of the internal capsule and anterior corona radiata. Projections to the premotor cortex passed through the genu and posterior limb of the internal capsule and middle corona radiata; in contrast, projections to the primary motor cortex, primary somatosensory cortex, and posterior parietal cortex ascended through the posterior limb of the internal capsule. No significant difference in fractional anisotropy, mean diffusivity, and fiber volume of all reconstructed thalamocortical projections was observed between the right and left hemispheres (p>0.05). Conclusion: We reconstructed the thalamocortical projections between the intralaminar thalamic nuclei and the frontoparietal cortex in normal subjects. We believe that our findings would be useful to clinicians involved in the care of patients with impaired consciousness and for researchers in studies of the ARAS.

Alterations of Cortical Folding Patterns in Patients with Bipolar I Disorder : Analysis of Local Gyrification Index (제1형 양극성장애 환자에서 대뇌피질 주름 패턴의 변형 : Local Gyrification Index 분석)

  • Lee, Junyong;Han, Kyu-Man;Won, Eunsoo;Lee, Min-Soo;Ham, Byung-Joo
    • Korean Journal of Biological Psychiatry
    • /
    • v.24 no.4
    • /
    • pp.225-234
    • /
    • 2017
  • Objectives Local gyrification reflects the early neural development of cortical connectivity, and is regarded as a potential neural endophenotype in psychiatric disorders. Several studies have suggested altered local gyrification in patients with bipolar I disorder (BD-I). The purpose of the present study was to investigate the alterations in the cortical gyrification of whole brain cortices in patients with BD-I. Methods Twenty-two patients with BD-I and age and sex-matched 22 healthy controls (HC) were included in this study. All participants underwent T1-weighted structural magnetic resonance imaging (MRI). The local gyrification index (LGI) of 66 cortical regions were analyzed using the FreeSurfer (Athinoula A. Martinos Center for Biomedical Imaging). One-way analysis of covariance (ANCOVA) was used to analyze the difference of LGI values between two groups adjusting for age and sex as covariates. Results The patients with BD-I showed significant hypogyria in the left pars opercularis (uncorrected-p = 0.049), the left rostral anterior cingulate gyrus (uncorrected-p = 0.012), the left caudal anterior cingulate gyrus (uncorrected-p = 0.033). However, these findings were not significant after applying the multiple comparison correction. Severity or duration of illness were not significantly correlated with LGI in the patients with BD-I. Conclusions Our results of lower LGI in the anterior cingulate cortex and the ventrolateral prefrontal cortex in the BD-I group implicate that altered cortical gyrification in neural circuits involved in emotion-processing may contribute to pathophysiology of BD-I.

The Development of the Brain-based Analysis Framework for the Evaluation of Teaching-Learning Program in Science (과학 교수-학습 프로그램의 평가를 위한 두뇌기반 분석틀의 개발)

  • Lee, Jun-Ki;Lee, Il-Sun;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.5
    • /
    • pp.647-667
    • /
    • 2010
  • The purpose of this study was to develop a brain-based analysis framework for evaluating teachinglearning program in science. To develop the framework, this study categorized educational constructs of the teachinglearning programs into one of three teaching-learning factors: cognition, motive, and emotion, using previous studies on science program. Ninety-three articles on the brain functions associated with science program were analyzed to extract brain activation regions related to the three educational constructs. After delineating the brain activation regions, we designed the brain function map, "the CORE Brain Map." Based on this brain map, we developed a brain-based analysis framework for evaluating science teaching-learning program using R & D processes. This framework consists of the brain regions, the bilateral dorsolateral prefrontal cortex, the bilateral ventrolateral prefrontal cortex, the bilateral orbitofrontal cortex, the anterior cingulate gyrus, the bilateral parietal cortex, the bilateral temporal cortex, the bilateral occipital cortex, the bilateral hippocampus, the bilateral amygdala, the bilateral nucleus accumbens, the bilateral striatum and the midbrain regions. These brain regions are associated with the aforementioned three educational factors; cognition, motivation, and emotion. The framework could be applied to the analysis and diagnosis of various teaching and learning programs in science.