• Title/Summary/Keyword: Ventilation design

Search Result 689, Processing Time 0.03 seconds

Design of a Helmet with Improved Ventilation for Personal Mobility (통기성을 개선한 개인용 이동장치 헬멧 구조 설계)

  • Jin-San Oh;Seong-Jun Kwon;Min-Ki Hong;Seong-Won Jeong
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.7-16
    • /
    • 2022
  • A helmet is essential for safety when operating personal mobility. However, user's actual helmet wear rate is low due to the inconvenience of wearing and poor ventilation. In this study, a new helmet structure with improved ventilation for personal mobility devices was designed. To design a new structure with improved breathability compared to the existing helmet while satisfying the safety regulations for the helmet, a generative design method was applied to the shock-absorbing liner of the helmet. In addition, other materials were applied to create a structure with improved ventilation while maintaining safety. The generated design result was verified for shock absorption through simulation. As a result of the study, EPS, the current material was replaced with CFRP and Kevlar, and the structure was changed. This design was judged to satisfy safety regulations against impact. The new helmet structure is expected to improve the helmet usability for personal mobility and increase the helmet wear rate of users.

Simulation and Analysis of Local Ventilation characteristic of Road Tunnel with Ventilation System (환기시스템 적용 도로터널의 국소환기 특성 시뮬레이션 및 해석)

  • 박기림;오명도;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.321-332
    • /
    • 2001
  • In this study, a design program for ventilation requirements of a longitudinal raod tunnel were developed and investigated. The control volume method was applied to calculate the local air velocity and the local concentration distribution of pollutants, CO, $NO_x$, soot along the tunnel for various tunnel ventilation system. This program was validated by comparing with the practical design data for the road tunnel ventilation system. The calculation results were in good agreement with the practical design data.

  • PDF

Development of Automated Modeling System for Air-Ventilation Holes (열 배출구 형상 모델링 자동화 시스템 개발)

  • Park, Hyun-Pung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.5
    • /
    • pp.330-337
    • /
    • 2009
  • Nowadays a lot of high-tech electronic products such as TVs, monitors and camcorders are being developed. The more functions the electronic devices have, the more heat problems occur. Therefore, most of electronic products have air-ventilation holes to eliminate heat that is generated inside the products. The shapes of ventilation holes are usually complicated since aesthetic appearance of the products is important these days. In order to create those complicated shapes, designers should do time-consuming jobs because most of commercial CAD systems do not provide the functions that create patterns of lofted parts along freeform surfaces. In this research, an automated air-ventilation hole modeling system was proposed. The system generates patterns of lofted objects on freeform surfaces. Standard process to create air-ventilation holes manually was established, and vent-hole types and pattern types were classified into several categories. Designers can create many kinds of vent-holes by combining vent-hole types and pattern types. Users can also utilize user-defined pattern which can give users more flexibility. Developed system was applied to several design examples and the results are presented.

Improvement of VSDS (Ventilation System Design Software) (산업환기시스템 설계 소프트웨어의 개선)

  • Park, Dong-Hee;Kim, Tae-Hyeung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.10 no.2
    • /
    • pp.78-97
    • /
    • 2000
  • Designing the industrial ventilation system is the complex and time-consuming job. It could generate some errors in the design calculations if one uses the hand-calculator or the spreadsheet program. To overcome these difficulties, VSDS(Ventilation System Design Software) had been developed a few years ago. But, it had the difficulty in designing a complex system having many branches because the user can not see the layout of the system on the screen. Another difficulty is that VSDS had been based on the assumption of the standard air condition. VSDS has thus been improved to overcome the shortcomings of the old version of VSDS.

  • PDF

Evaluation of Ventilation Rate and External Air Mixing Ratio in Semi-closed Loop Ventilation System of Pig House Considering Pressure Loss (압력손실을 고려한 양돈시설의 반폐회로 환기시스템의 환기량 및 혼합비율 평가)

  • Park You-me;Kim Rack-woo;Kim Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.61-72
    • /
    • 2023
  • The increase in the rearing intensity of pigs has caused deterioration in the pig house's internal environment such as temperature, humidity, ammonia gas, and so on. Traditionally, the widely used method to control the internal environment was through the manipulation of the ventilation system. However, the conventional ventilation system had a limitation to control the internal environment, prevent livestock disease, save energy, and reduce odor emission. To overcome this problem, the air-recirculated ventilation system was suggested. This system has a semi-closed loop ventilation type. For designing this system, it was essential to evaluate the ventilation rates considering the pressure loss of ducts. Therefore, in this study, pressure loss calculation and experiment were conducted for the quantitative ventilation design of a semi-closed loop system. The results of the experiment showed that the inlet through which external air flows should always be opened. In addition, it was also found that for the optimum design of the semi-closed loop ventilation system, it was appropriate to install a damper or a backflow prevention device rather than a ventilation fan.

Development of New Conceptual Ventilation Graphs for Mechanically Ventilated Livestock Buildings (畜舍의 換氣量 決定을 위한 새로운 換氣그래프 開發)

  • Choi, Hong-Lim;Kim, Woo-Joong;Kim, Hyeon-Tae
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.3
    • /
    • pp.91-100
    • /
    • 1991
  • Since ventilation in livestock buildings is critical for indoor air quality, the first step in designing environmental control is to determine required ventilation rate. The purpose of the study was to suggest a conceptually new ventilation graph for determining minimum/maximum ventilation rate based on the conservation law of the thermal energy and mass in livestock buildings. PC-based programs coded with PASCAL language, [RVALUE] for overall thermal resistance of composite structural walls/ceilings, [POLYNOM] for coefficients values of animal's sensible heat equation were involved in developing a computer program, [VENTGRPH] for the determination of ventilation rate. It would be useful for design, for such a program would permit the designer to explore various design options and immediately, see the result in terms of its effect on minimum ventilation rates.

  • PDF

The Effects of Construction of Tipping Paper and Plug Wrap Permeability on the Dual Cigarette Filter Ventilation (팁페이파 및 필터권지 기공도 조합이 이중필터 제품담배 공기희석율에 미치는 영향)

  • 김정열;김종열;신창호
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.2
    • /
    • pp.107-112
    • /
    • 2002
  • There are many combination with the porosity of tipping paper and plug wrap for a design of ventilation rate of cigarette. This study was carried out to determine the effect of a design of permeability of tipping paper and inner or outer of plug wrap on the ventilation rate of cigarette with constant pressure drop in column part and filter part. Our results indicated that the higher the plugwrap porosity, the higher the ventilation rate and the less variable of cigarette in case of mono filter. But, in case of duel filter, the ventilation rate of cigarette was depended on the manufacturing method of filter plug, even though using the same porous plug wrap on inner and outer of filter. We also found that the porosity of outer plug wrap was more effect on the ventilation rate than the porosity of inner plug wrap. As the high porosity of inner plug wrap compared with the porosity of outer plug wrap, the less variable of ventilation rate of cigarette in any combination of the porosity of plug wrap. When we used the higher porous outer plug wrap than inner plug wrap, the ventilation rate of cigarette was high. Also, the higher the inner plug wrap porosity, the less variable of ventilation rate of cigarette.

Evaluation of Ventilation Effectiveness Before and After Kitchen Renovation in Schools of Gyeongsangnam-do (경남지역 학교 급식조리실 개선 전후 환기성능 평가)

  • Jongwon Son;Taehyeung Kim;Hyunchul Ha;Byounghoon Kim;Kritana Prueksakorn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.35-47
    • /
    • 2024
  • Objectives: Many cases of lung cancer have been reported by school kitchen workers as occupational cancer. Twenty-eight schools in Gyeongsangnam-do Province were selected to evaluate the effect of improved kitchen ventilation systems. Ventilation characteristics before and after renovation were compared and design techniques were identified. Methods: In the design stage for kitchen ventilation systems, expert intervention was used to improve the designs. Ventilation characteristics and air quality were evaluated before and after the renovations. Hood face velocity and fan flow rate were measured and the smoke visualization technique was used to evaluate the capability of protecting worker's breathing zone. The concentrations of PM0.3 were measured at points not adjacent to cooking equipment because these concentrations fluctuate greatly. Results: Mean hood face velocity increased from 0.29 m/s before renovation to 0.7m/s after renovation. The concentrations of PM0.3 showed a roughly 95% reduction. Concentrations of CO showed more than a 75% reduction. Smoke visualization showed greater protection of workers' breathing zone. Conclusions: Advanced design techniques for school kitchen ventilation systems were applied to renovate old kitchen ventilation systems. The performance of the new kitchen ventilation systems was nearly excellent. Further improvement of design techniques is still needed, however.

The Comparative Experiment of Duct Design Method with Equal Friction Loss Method and T-Method on a House Ventilation System (등압법과 T-Method법을 이용한 주택환기시스템 덕트설계법의 비교실험)

  • Joo, Sung-Yong;Kim, Kwang-Hyun;Choi, Seok-Yong;Yee, Jurng-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.99-104
    • /
    • 2006
  • Accurate flow rate distribution has been become a very important part for controling of air change rate since the introduction of house ventilation system. An inappropriate selection of fan due to Incorrect prediction of friction loss makes waste energy. The purpose of this study is to recognize applicability of T-Method at house ventilation system by comparing experiment with T-method, The result of this study is as follows Flow rate is small amount in a house, so duct size must be accurate. And duct design with Equal Friction Loss Method presented large error range. Equal friction loss method is not fit to applicate small amount air flow rate. T-Method predicts accurate flow rate comparatively in a house ventilation system. Error range was 3.5%.

  • PDF

A Study on Window Type Ventilation System Using IT Technology for Energy Saving in Housing Space (주거공간 내 IT기술 적용 에너지 저감 창호형 환기시스템 연구)

  • Lee, Eun-Hye;Kim, Yong-Seong;Ji, Chung-Gu
    • Journal of the Korean housing association
    • /
    • v.24 no.2
    • /
    • pp.61-68
    • /
    • 2013
  • This study has the purpose to adapt IT technology on Window Type Ventilation System for the energy saving and providing of user-centered comfortable environment. This is Derived a look at the case of the window type ventilation system and researched its IT technology for reducing energy applied to the Green Home. This indicates a solution for the established Window Type Ventilation System which can not be satisfied with user's requirement by proposing Window Type Ventilation System applied to IT technology that makes it control the intelligent, combined indoor environment system and providing information. Also, it shows energy saving efficiency of Window Type Ventilation System applied to IT technology based on the model study, analysing the performance of air-conditioning and ventilation energy saving through the experiment to compare with the established Window Type Ventilation System. The result of this study has the significance that it suggests an alternative for energy saving of housing space.