• Title/Summary/Keyword: Ventilation condition

Search Result 443, Processing Time 0.029 seconds

Derivations of Positive Pressure Condition for Development of Foldable Safe Pathway in Railway Tunnel Fires (철도터널화재용 접이식 대피통로 개발을 위한 양압 조건 도출)

  • Kim, JiTae;Ro, Kyoungchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.284-289
    • /
    • 2019
  • The Korea Foldable safe pathway system is an evacuation support system to get temporary evacuation route in railway tunnel and large space fires. A prevention smoke screen is unfolded in fires and it is needed to prevent heat and smoke from fire source. Therefore, ventilation system for positive pressure condition is equipped with foldable safe pathway system. Numerical analyses of temperature and pressure distribution with distance from fire source were performed considering fire scenario of new train vehicle. The smoke temperatures did not exceed $200^{\circ}C$ that distance from the fire source was more than 20 m and smoke pressure was reduced with distance from fire source. Maximum smoke pressure was 14 Pa and average pressure was 6 Pa in position of prevention smoke screen. As results, to install foldable safe pathway system, ventilation system is need to maintain 6 Pa positive pressure condition.

Characteristics of Cooling Effect Depending on Operation of Forced Ventilation Systems in a Single-span Plastic Greenhouse (강제환기장치 사용에 따른 단동 플라스틱 온실 기온 강하 특성)

  • Kim, Seong-Heon;Kim, Hyung-Kweon;Kwon, Jin-Kyung;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.143-151
    • /
    • 2022
  • This study was carried out to investigate quantitative characteristics of the cooling effect in a single-span arch greenhouse with roll-up side vents depending on operation of circulation and exhaust fans during ventilation, in order to suggest a practical strategy regarding installation or operation of forced ventilation systems. The examination was conducted under 3 different ventilation conditions (side vents only, side vents + circulation fans, and side vents + circulation fans + exhaust fans). In each condition, variations of internal and external air temperatures and exogenous environmental factors were recorded during ventilation, and the cooling effects were investigated by comparing the normalized temperature difference (NTD) of each ventilation condition. In the morning time (11:00-12:00), a temporary peak in the temperature difference was observed at the beginning of ventilation regardless of ventilation methods. The time taken to the maximum NTD was decreased from 340 s to 110s, and the NTD was dropped from 1.158 to 1.037 as the more forced ventilation systems were operated. The more operations caused the passing time over specific NTD values reduced by 60% as the time was reduced from 1,030 s to 550 s at NTD = 0.8, 1,610 s to 915 s at NTD = 0.6, and 2,315 s to 1,360 s at NTD = 0.4. The temporary peak in NTD was not observed in the afternoon time (14:00-15:00) but it was dropped as quickly as the ventilation started. Also the more operations resulted in the passing time over specific NTD values reduced by 70% as the time was reduced from 560 s to 345 s at NTD = 0.8, from 825 s to 540 s at NTD = 0.6, and from 1,145 s to 810 s at NTD = 0.4. Conclusively, the intervention of the forced ventilation system is recommended in the morning time or in high thermal conditions to achieve more effective and economical ventilation.

Conservation of An Endangered Species of Lilium cernum Komarvo. through in vitro Mass-Propagation (멸종위기 종 솔나리의 기내 대량생산을 통한 보존 연구)

  • Lee, Song-Hee;Lee, Su-Gwang;Kang, Ho-Duck
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • This study was conducted to establish the optimal condition for conservation of genetic resources and micropropagation of Lilium cernum. Induction of bulbet of L. cernum was highly effective (9.2 bulb/explant) on 1/2 SH (Schenk and Hildebrandt) medium supplemented with 1.0 mg/L TDZ (Thidiazuron) and 0.1 mg/L NAA (Naphthaleneacetic acid). The treatment of 0.1 mg/L NAA increased root development (6.4 root/explant) under the in vitro condition. In addition, treatments of AC (Activated Charcoal) and ventilation were enhanced to develop number of shoots and to elongate length of leaf, bulb and root. Futhermore, the process of short-term soil acclimatization was promoted to strengthen the plantlets induced under the in vitro condition.

Specific Process Conditions for Non-Hazardous Classification of Hydrogen Handling Facilities

  • Choi, Jae-Young;Byeon, Sang-Hoon
    • Safety and Health at Work
    • /
    • v.12 no.3
    • /
    • pp.416-420
    • /
    • 2021
  • Hazardous area classification design is required to reduce the explosion risk in process plants. Among the international design guidelines, only IEC 60079-10-1 proposes a new type of zone, namely zone 2 NE, to prevent explosion hazards. We studied how to meet the zone 2 NE grade for a facility handling hydrogen gas, which is considered as most dangerous among explosive gases. Zone 2 NE can be achieved considering the grade of release, as well as the availability and effectiveness of ventilation, which are factors indicative of the facility condition and its surroundings. In the present study, we demonstrate that zone 2 NE can be achieved when the degree of ventilation is high by accessing temperature, pressure, and size of leak hole. The release characteristic can be derived by substituting the process condition of the hydrogen gas facility. The equations are summarized considering relation of the operating temperature, operating pressure, and size of leak hole. Through this relationship, the non-hazardous condition can be realized from the perspective of inherent safety by the combination of each parameter before the initial design of the hydrogen gas facility.

A study on the air leakage performance improvement of duct coupling for temporary ventilation of long subsea tunnel (초장대 해저터널의 공사중 덕트 접속부의 누풍 성능 개선에 관한 연구)

  • Jo, Hyeong-Je;Min, Dea-Kee;Kim, Jong-Won;Lee, Ju-Kyung;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.319-333
    • /
    • 2017
  • The construction of long sub-sea tunnel does not provide the favorable condition for the installation of ventilation system to be used during construction due to the constrained construction space. For the ventilation system required during construction, the artificial island where ventilation shaft is located is constructed at some location along the sub-sea tunnel route, which requires a high construction cost. Therefore, it is intended, as much as possible technically, to minimize the construction of artificial island. However, this requires a longer distance between ventilation shafts, there-by causing increased air leakage at the ventilation duct connection points due to the higher fan pressure being required to deliver ventilation air. Previously the air leakage was studied as an important issue. In this study experiments were carried out to develop the improved duct connection method considering various conditions such as, tunnel length, etc. Additionally, its performance results with leakage rates are shown and compared to the "S" class leakage rate of SIA. As a result, the new duct coupling type of improved method is analyzed as applicable to such a 30 km long tunnel with the leakage rate of $1.46mm^2/m^2$, which is better performance than SIA leakage rates.

A Case Study on the Construction of Large Cross Section Tunnel for Underground Ventilation System (지하환기소 대단면 터널 시공 사례 연구)

  • Noh, Seung Hwan;Choi, Sung Wook;Noh, Sang Lim
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.195-204
    • /
    • 2017
  • This case study introduces the construction of large cross section tunnel for underground ventilation system in Sillim-Bongcheon Tunnel Project. In order to grant the safety and efficiency in connecting the ventilation shaft (7.8 m of width, and 6.6 m of height) to a tunnel for axial fan facility (20.8 m of width, and 12.3 m of height), gradual enlargement of tunnel cross section was employed between those and temporary support method was determined based on Q system. In addition, some original designs were revised during construction stage to improve the efficiency of excavation in large cross section tunnel. The advance length was optimized and top heading of the tunnel was excavated without partition in accordance with ground condition and numerical stability analysis results. It is believed that some experiences and considerations in this case study will be useful for the future design and construction in similar large cross section tunnel such as large underground ventilation system or road tunnel with four lanes.

Evaluation of Indoor Air Quality Improvement by Formaldehyde Emission Rate in School Indoor Environment Using Mass Balance (물질수지를 이용한 학교 실내환경의 포름알데히드(HCHO) 배출량 산정에 의한 실내공기질 개선 평가)

  • Yang, Won-Ho;Son, Bu-Soon;Kim, Dae-Won;Kim, Young-Hee;Byeon, Jae-Cheol;Jung, Soon-won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.160-165
    • /
    • 2005
  • Schools have significant and serious indoor environmental health problem, of which indoor air quality (IAQ) in school building may affect the health of the students and indirectly affect learning performance. Schools are of special concern when regarding indoor exposure to air pollutants, because students are particularly sensitive to pollutants and spend a significant amount of time in that environment. Therefore researches for improvement of indoor air quality have been developed such as installation of air cleaning device, ventilation system, titanium dioxide(TiO2) coating and so on. However, it is difficult to evaluate the magnitude of improvement of indoor air quality in field study because indoor air quality can be affected by source generation, outdoor air level, ventilation, decay by reaction, temperature, humidity, mixing condition and so on. In this study, evaluation of reduction of formaldehyde emission rate in school indoor environments by far-Infrared ray coating material was carried out using mass balance model in indoor environment. we proposed the evaluation method of magnitude of improvement in indoor air quality, considering outdoor level and ventilation. Since simple indoor concentration measurements could not properly evaluate the indoor air quality, outdoor level and ventilation should be considered when evaluate the indoor air quality.

Tunnel Ventilation Controller Design Employing RLS-Based Natural Actor-Critic Algorithm (RLS 기반의 Natural Actor-Critic 알고리즘을 이용한 터널 환기제어기 설계)

  • Chu B.;Kim D.;Hong D.;Park J.;Chung J.T.;Kim T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.53-54
    • /
    • 2006
  • The main purpose of tunnel ventilation system is to maintain CO pollutant and VI (visibility index) under an adequate level to provide drivers with safe driving condition. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement teaming (RL) method. RL is a goal-directed teaming of a mapping from situations to actions. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. Constructing the reward of the tunnel ventilation system, two objectives listed above are included. RL algorithm based on actor-critic architecture and natural gradient method is adopted to the system. Also, the recursive least-squares (RLS) is employed to the learning process to improve the efficiency of the use of data. The simulation results performed with real data collected from existing tunnel are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  • PDF

Analysis of Field Measured Odor Emission Rate in Pig Houses (국내 돈사 악취 방출량 측정 결과 분석)

  • Decano-Valentin, Cristina;Lee, In-bok;Yeo, Uk-hyeon;Jeong, Duek-young;Lee, Sang-yeon;Park, Se-jun;Cho, Jeong-hwa;Lee, Min-hyeong;Jeong, Hyohyeog;Kim, Da-in;Kang, Sol-moe
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.55-63
    • /
    • 2022
  • Odors emitted from pig houses have been a constant root of legal issues in pig farming. These gases are among the main causes of health and mental stresses to nearby communities, so policymakers and researchers continuously study to reduce the concentration of odorous gases from pig facilities. A continuous field experiment proved that the concentration of odor emissions inside the pig houses is highly dependent on ventilation rate, breeding details, and animal activities. However, the standard odor emission rate worldwide widely varies due to differences in pig house designs and ventilation requirements. Thus, this study aimed to measure the odor emission rates, considering the actual condition of selected Korean pig houses, through field measurement. The odor measurements were performed at three different pig production facilities without odor abatement technologies. The target experimental pig houses were buildings for weaning, growing, and fattening pigs. Results showed that the actual ventilation rate in target pig houses falls below the standard ventilation requirement of pigs, resulting in high odor concentrations inside the pig houses.