• Title/Summary/Keyword: Ventilation Process

Search Result 232, Processing Time 0.023 seconds

Ventilation Hole Optimum Design of Smart Unit Load Container for Storage and Distribution Agricultural Products by Theoretical Heat Flow Analysis (이론적 열유동 해석을 이용한 농산물 저장 및 유통 스마트 유닛로드 컨테이너의 통기공 최적화 설계)

  • Dong-Soo, Choi;Yong-Hoon, Kim;Jin-SE, Kim;Chun-Wan, Park;Hyun-Mo, Jung;Ghi-Seok, Kim;Jong-Min, Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.211-215
    • /
    • 2022
  • Air distribution occupies an important position in the smart unit load container design process for agricultural products. Inner air may be uncomfortable because of its temperature, speed, direction, and volume flow rate. It doesn't matter how efficient the ventilation equipment is if the air is not distributed well. The main aim of this study was to design the inlet and outlet fan locations of smart unit load container for agricultural products. A numerical study was performed on the effects of the location of inlet air and outlet air in relation to the container cooling sources on air distribution and thermal comfort. A concept of combining inner container cooling sources with the exhaust outlet was employed in this investigation. Also, in this research, the developed CFD (Computational Fluid Dynamics) models were thoroughly validated. This system was adopted for use in container spaces, where the exhaust outlet was located. In this study, the location of the inlet was derived through CFD for a container with a size of 1,100×1,100×1,700 mm, and it was derived that the inlet was located at the center of the lower part of the container for efficient air flow. It was efficient to position the outlet through the air inlet in the center of the lower part of the container at the top of the same side.

Optimum Environmental Conditions for Composting of Livestock Manure (축분의 퇴비화를 위한 최적 환경조건)

  • Rim, Jay-Myung;Han, Dong-Joon;Kang, Hyun-Jay
    • Journal of Industrial Technology
    • /
    • v.13
    • /
    • pp.3-17
    • /
    • 1993
  • The composting process is a suitable to dispose the livestock manure in terms of resources recovery. However the performence of composting process is greatly affected by the environmental conditions such as characteristics of manure, type of the bulking agent, initial moisture contents, temperature, recycle and so on. The purpose of this study is to evaluate the optimum environmental conditions of composting process for livestock manures. The analytical results indicated that no bulking agent was necessary for the cow manure because of the proper C/N ratio. However the pig manure required a bulking agent since the pig manure had not only low in C/N ration but poor ventilation characteristics. In addtion, the initial miosture content for optimum composting appeared to be about 60%. The temperature control was also an essential factor to enhance the activity of thermophilic microorganisms in the laboratory composting unit. It was further found that the recycle of composts may contributed the completion of composting precess as well as C/N ratio reduction and moisture control.

  • PDF

Measurement of harmful factors occurring in Machinery and Core workshop (기계 및 중자 제조작업장에서 발생하는 유해인자의 측정)

  • 안승두;박근호
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.3
    • /
    • pp.25-32
    • /
    • 1996
  • This study is a survey on the effect of working security and worksite environment connected to the worst case of noise and dust which was generated in the manufacturing workshop of machinery and easting. The noise intensity of the manufacturing process tends to increase up to the limited strength of 90db (A) or the higher during the last 4~5 years in 1990~1994. This result requires a significant improvement of worksite environment of unit workshop. The concentration of dust in the gouging process tends to increase to a significantly high level compared with other worksite, which also requires a local ventilation method to reduce the dust diffusion. Organic solvents used most frequently in the manufacturing process machinery were the aromatic hydrocarbons, but were gradually diversed in recent years.

  • PDF

A Study on the Fire Risk Assessment of Combustible Exhaust Duct-fume (가연성 배기덕트-흄 화재위험성 평가에 관한 연구)

  • Yoon, Yeo-Song;Lee, Young-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.32-37
    • /
    • 2010
  • When back-out & firing Process applies heat, hume is piled up in exhaust duct by organic compound and it have high dangerousness. There by, the process is happening a lot of damage that is exhaust duct fire. However we do not have certain fire dangerousness estimation and digestion countermeasure. So we need preventive measure. Back-out & firing is a process which has fine structure, electrical and mechanical characteristics, such as firing kiln and back-out kiln which has pipe line and box type. The box oven is made of heating coil, fan motor and control panel. Back-out & firing process has air circulation institution of quick ventilation type. When we operate this process for long time, fire can break out easily. Duct is made by zinc shredder. If fire breaks out in duct inside, fire by deposit fume can be dispersed easily. Accordinglym, This project estimate danger for back-out & firing process exhaust duct through real fire test. And there is purpose of study to establish preventive measure.

Energy Performance Evaluation of Zero Energy Technologies for Zero Energy Multi-House (공동주택의 에너지 자립을 위한 핵심요소기술의 에너지 성능평가)

  • Yoon, Jong-Ho;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.161-167
    • /
    • 2007
  • Zero Energy Multi-House(ZeMH) signifies a residential building which can be self sufficient with just new and renewable energy resources without the aid of any existing fossil fuel. For success of ZeMH, various innovative energy technologies Including passive and active systems should be well integrated with a systematic design approach. The first step for ZeMH is definitely to minimize the conventional heating and cooling loads over 50% with major energy conservation measure and passive solar features which are mainly related to building design components such as super-insulation, super window, including infiltration and ventilation issues. The purpose of this study is to analyze the thermal effect of various building design components in the early design of ZeMH. The process of the study is presented in the following. 1) selection reference model for simulation 2) verification of reference model with computer simulation program(ESP-r 9.0). 3) analysis of effect according to insulation-thickness, kinds of windows, rate of infiltration. and The simulation results indicate that almost 50% savings of conventional heating load in multi-house can be achieved with the optimum design of building components such as super insulation, super window, infiltration, ventilation.

Intelligent Microclimate Control System Based on IoT

  • Altayeva, Aigerim Bakatkaliyevna;Omarov, Batyrkhan Sultanovich;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.254-261
    • /
    • 2016
  • The present research paper is devoted to solving an urgent problem, i.e., the energy saving and energy efficiency of buildings. A rapid settlement method and experimental control of the energy conservation based on the specific characteristics of the thermal energy consumption for the heating and ventilation of the buildings, and as well as the rapid development of wireless sensor networks, can be used in a variety of monitoring parameters in our daily lives. Today's world has become quite advanced with smart appliances and devices such as laptops, tablets, TVs, and smartphones with various functions, and their use has increased significantly in our day-to-day lives. In this case, the most important role is played by a wireless sensor network with its development and use in heterogeneous areas and in several different contexts. The fields of home automation, process management, and health management systems make extensive use of wireless sensor networks. In this paper, we explore the main factors of the microclimate in an indoor environment. We control the temperature humidity, and other factors remotely using sensors and Internet-of-Things technologies.

Balancing air flow at terminal in CAV duct system with DPM method (정풍량방식 덕트에서 이중압력측정방법을 이용한 취출구 풍량조정)

  • 이대우;박명식;박영우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.66-78
    • /
    • 1998
  • Adequate ventilation with the proper amount of air to the right place is important factor to achieve a good Indoor air climate. Thus it is of prime importance that the ventilation system is working properly. This requires reliable pressure loss calculation to balance the air flow through duct systems. So a computer program for balancing CAV duct system is developed In this study. The results of CAV duct system is compared with the "Balans" code developed by Larsen from Norway. To obtain the pressure drop characteristics of damper at duct terminal, some experiments are performed using DPM(Dual Pressure Measurement) system. To adjust the resistance of damper, present study suggests that some special diffusers should be designed and damper producers should give the data of air flow vs. pressure drop to the customs when they manufacture the damper. One of the results concludes that the working time can be reduced from several minutes to several seconds per damper in the present experimental site, if the DPM system and the air volume adjusting process are used.

  • PDF

A Study on the Form of Window and Door of the Medieval Times House - Focused on the House of Unified Silla and Goryo Period - (중세 주택의 개구부 형식에 관한 연구 - 통일신라 및 고려시대 주택을 중심으로 -)

  • Lee, Jeong-Mee
    • Journal of the Korean housing association
    • /
    • v.24 no.6
    • /
    • pp.133-140
    • /
    • 2013
  • This study is to clarify the form of window and door of medieval times house which are no longer in existence, by comparative analysis between literature materials and architectural remains of united Silla and Goryo period. Particularly the window and door form change process of was analyzed, in connection with the change of term which are recorded in literature material. The form and the composition of window and door are the elements which determine the elevation design of architecture and concerned with interior environment. Therefore this study is significant in the sense that it could be used as base data for the study on the reconstruction and interior space of medieval times house. There were ho (戶) and moon (門) as door, and chang (窓) for lighting and ventilation as window. Among these, the window can be divided into fixed and openable. There were two kind of fixed window. One is called chang (窓), and it was covered by silk or paper for lighting. The other is called ham (檻), it was the form of vertical bar window and lighting and ventilation was available. And there were two kind of openable window. One is called ho (戶), which had wooden plate window leaves. And the other is called changho (窓戶), lighting was available in the condition of closing.

A Numerical Study On Various Energy and Environmental Systems(Ⅰ) : LPG dispersion, Lake flow, Primary clarifier, Hood ventilation, Cyclone combustor, Dow chlorination reactor. (에너지$\cdot$환경 제반 시스템에 관한 수치 해석적 연구 (Ⅰ) : LPG 확산, 호소 유동, 일차침전조, 국소 환기용 후두, 싸이클론 연소로, Dow 화학 반응로)

  • Jang Dong-Sun;Kim Gyeong-Mi;Lee Eun-Ju;Park Byeong-Su;Kim Bok-Sun
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.93-108
    • /
    • 1997
  • This paper describes several computational results on the various energy and environmental problems using Patankar's SIMPLE method. The specific problems included in this study are : pollutant and flammable material dispersions in open and confined areas, buoyancy-driven flow in a lake, primary clarifier for water and waste water treatment, hood ventilation in workplace. cyclone combustor and Dow chlorination reactor. A control-volume based finite-difference method is employed together with the power-law scheme. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, says SIMPLER and SIMPLEC. The Reynolds stresses are closed using the standard or RNG κ-ε models. A nonequilibrium turbulent reaction model is developed for the application of the chlorination process in the Dow thermal reactor. Other important empirical models and physical insights appeared in this study are presented and discussed in a brief note. The computational method developed in this study is considered, in general, as a viable tool for the design and determination of the optimal operating condition of various environmental engineering system of interest.

  • PDF