• Title/Summary/Keyword: Vent Analysis

Search Result 158, Processing Time 0.032 seconds

Axisymmetric Temperature Analysis of Ventilated Disk using Equivalent Parameters (등가상수를 이용한 벤트레이트 디스크의 축대칭 온도 해석)

  • 여태인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.137-142
    • /
    • 2003
  • In automotive brake systems, the frictional heat generated can cause high temperature at the interface of rotor and pad which may deteriorate the material properties of the sliding parts and can result in brake fade. Conventionally, a pie-shaped 3-dimentional model is adopted to calculate temperature of ventilated disk using finite element method. To overcome the difficulties in preparing 3D finite element model and reduce the computational time required, the ventilated rotor is to be analyzed, in this study, as an axisymmetric finite element model in which, taking into considerations the effects of cooling passages, a homogenization technique is used to obtain the equivalent thermal properties and boundary conditions for the elements placed at the vent holes. Numerical tests show the proposed procedure can be successfully applied in practice, replacing 3-dimensional thermal analysis of ventilated disk.

Fuel System Design of the Smart UAV (스마트 무인기 연료 시스템 설계에 관한 연구)

  • Kong Chang-Duk;Kang Myoung-Cheol;Lee Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.54-61
    • /
    • 2005
  • In this study, the fundamental design procedure for the Smart UAV fuel supply system was set up, and the preliminary design was performed to meet the vehicle system requirements. The fuel system layout was determined through consideration of vehicle system requirements, and then fuel tank layout, design of components such as booster pump, jet pump, pipe, vent system, weight estimation, etc. were carried out. Based on this fuel system layout, operational reliability analysis was carried out.

A Study of the Characteristics of Unsteady Laminar Jet Submerged into a Suppression Pool (응축 풀 내의 비정상 층류 제트의 유동 특성에 관한 연구)

  • Choi, Yong Moon;Kim, Chong Bo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.499-507
    • /
    • 1988
  • The pressure suppression pool of BWR(Boiling Water Reactor) is subjected to hydrodynamic impact in the event of a LOCA(Loss of Coolant Accident). The pressure increase in the reactor dry cell would force the existing water of a vent pipe into the suppression pool. When the water is ejected through the pipe opening into the suppression pool, an abrupt downward force is transmitted to the suppression pool floor. Consequently, many structures installed within the pool must be able to withstand these forces. In order to determine the optimum safe locations of the pool structures, numerical analysis have been carried out to investigate the hydrodynamic behavior of the water jet. In the present analysis, a two-dimensional numerical model is utilized to solve transient flow equations.

  • PDF

A Study on the Flow Analysis of Ventilation Louver for Polar Ship (극지운항 선박용 루버 환기창 유동해석에 관한 연구)

  • Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.16-22
    • /
    • 2018
  • This study is about flow distribution in ventilation systems used in marine louvers. The flow analysis on a louver installed on the vent of a vessel results in the following conclusions: (a) as the velocity of the fluid entering the louver increases, the pressure drop increases; (b) as the pressure drop increases, it tends to increase following a quadratic function. The velocity was confirmed to decrease at the entrance of the louver. This indicates that as the pressure increases, the velocity decreases, and the velocity of the moving fluid is increasing as it passes through the louver vanes.

Numerical Study on Improvement of Storage Environment of Igloo-Shaped Magazine Using Forced Ventilation (강제환기를 적용한 이글루형 탄약고 저장환경 개선에 관한 수치적 연구)

  • Yoon, Hae-Deun;Kim, Seong Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.99-106
    • /
    • 2021
  • This study explores the improvement of storage environment of igloo-shaped magazine using forced ventilation. Conjugate heat transfer analysis of forced convection and conduction are performed to calculate the flow, temperature, and relative humidity field in igloo-shaped magazine. Through the conjugate heat transfer analysis, the effects of inlet vent, volume flow rates of jet, and jet angles on the condensation and relative humidity are numerically investigated. The area of condensation in igloo-shaped magazine and relative humidity at the surface of ammunitions are then calculated.

A study of Flame Arrestor's Spring Structural Analysis (폭연방지기 스프링의 구조해석에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Kim, Jun-Ho;Choi, Min-Seon;Yang, Chang-Jo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.11a
    • /
    • pp.69-69
    • /
    • 2017
  • Flame arrestor as end of line flame arrester for endurance burning prevents a light-back at deflagration and stabilized burning (during and after endurance burning) of potentially explosive vapor-air and gas-air mixtures at the end of vent pipes. In a flame arrestor, spring is an important part. The spring load as well as the spring's elasticity determine when the hood is opened. In addition, the spring have to work in high temperature condition due to gas burning. Therefore, it is necessary to analyze mechanical load and elasticity of spring when gas is burned. Based on the dynamic calculation on working process of a specific flame arrestor, analysis of spring is taken. A three dimensional model for spring burned in flame arrestor by using CFD simulation. Results of the CFD analysis are input in FEM simulation to analyze structure of the spring. The simulation results can predict and estimate the spring's load and elasticity at variation of the spring's deflection. Moreover, the obtained result can provide makers with references to optimize design of spring as well as flame arrestor.

  • PDF

Numerical Study on the Thermal Distortions of Ventilated Disk Brakes Due to Air Cooling Effects (벤틸레이티드 디스크 브레이크에서 공냉효과가 열변형 거동에 미치는 영향에 관한 수치적 연구)

  • 조승현;이일권;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.332-338
    • /
    • 1999
  • A coupled thermal-mechanical analysis has been presented for the thermal distortions of the ventilated disk brakes during IS braking operations. The FEM results show that the bendings and distortions of the disk toward the left side are decreased, but the sinusoidal distortion of the disk rubbing surface along the arc length of the vent hole is highly increased by increasing the convective air cooling effects, which is heavily related to the squeal, wear and micro-thermal crackings at the rubbing surfaces due to uneven dissipation rates of friction heatings.

  • PDF

A Scoping Analysis of Venting Capability During Loss of RHRS Events

  • Lee, Cheol-Sin;Han, Kee-Soo;Park, Chul-Jin;Kim, Hee-Cheol
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.657-662
    • /
    • 1996
  • Venting capability to prevent excess pressurization caused by loss of Residual Heat Removal System (RHRS) during mid-loop operation hat been evaluated analytically and the peak Reactor Coolant System (RCS) pressure was compared with the results of the MIDLOOP computer code. Even though analytical method if relatively simple, the results are in a good agreement with those of the computer code. For both methods, the peak pressures have not, exceeded the nozzle dam design pressure, if the vent paths such as pressurizer safety valves or a pressurizer manway are available in a closed RCS configuration with the nozzle dam installed.

  • PDF

Characterization of Stitched Multiaxial Warp Knit Fabric Composites and Channel Beam Manufacturing (Stitched 다축경편 복합재료의 기계적 특성 및 U 빔 성형)

  • 변준형;이상관;엄문광;김태원;배성우;하동호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.280-283
    • /
    • 2002
  • In the manufacturing of large scale composite structures, the cost-effective processing and the enhancement of structural performance are critical. One of the most effective ways for this purpose is to use stitched multiaxial warp knitted (MWK) perform in the resin transfer molding process. This study reports the effect of stitching on the mechanical properties of MWK composites, and the feasibility processing of the thick U-beam structure utilizing the stitched preforms. Permeability of the preform, viscosity and cure property of the epoxy resin have been measured. The results of resin flow analysis has been used in determining the gate/vent locations of the RTM mold. Cross-sectional observation of the channel beam prototype demonstrated that the resin impregnation was almost complete, except for some surrounding area of stitched yarns.

  • PDF

A Numerical Study of Aerodynamic Characteristics for a Rotating Parachute in Steady Descending Motion (등속도로 하강중인 Rotating Parachute의 공력특성에 관한 수치 해법 연구)

  • Je S. E.;Jung S. G.;Kwag S. H.;Myong R. S.;Cho T. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.119-122
    • /
    • 2005
  • In this paper a method for analysing aerodynamic characteristics of a rotating parachute in steady descending motion is presented. Because of a complex geometric configuration of the parachute associated with side vents and discontinuous skirts, special procedure was adopted th handle the geometry in the analysis. A panel method was successfully applied to the present problem and yielded good results using above procedure. A CFD code using the full Navier-Stokes equations was also applied and provided good results. Parachute free drop and wind tunnel tests were performed to determine the fully developed canopy configuration and aerodynamic characteristics. The method can be used for optimizing the parachute size and side vent configurations in the design period.

  • PDF