• Title/Summary/Keyword: Venous

Search Result 1,325, Processing Time 0.031 seconds

Subjective and Objective Assessment of Monoenergetic and Polyenergetic Images Acquired by Dual-Energy CT in Breast Cancer

  • Xiaoxia Wang;Daihong Liu;Shixi Jiang;Xiangfei Zeng;Lan Li;Tao Yu;Jiuquan Zhang
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.502-512
    • /
    • 2021
  • Objective: To objectively and subjectively assess and compare the characteristics of monoenergetic images [MEI (+)] and polyenergetic images (PEI) acquired by dual-energy CT (DECT) of patients with breast cancer. Materials and Methods: This retrospective study evaluated the images and data of 42 patients with breast cancer who had undergone dual-phase contrast-enhanced DECT from June to September 2019. One standard PEI, five MEI (+) in 10-kiloelectron volt (keV) intervals (range, 40-80 keV), iodine density (ID) maps, iodine overlay images, and Z effective (Zeff) maps were reconstructed. The contrast-to-noise ratio (CNR) and the signal-to-noise ratio (SNR) were calculated. Multiple quantitative parameters of the malignant breast lesions were compared between the arterial and the venous phase images. Two readers independently assessed lesion conspicuity and performed a morphology analysis. Results: Low keV MEI (+) at 40-50 keV showed increased CNR and SNRbreast lesion compared with PEI, especially in the venous phase ([CNR: 40 keV, 20.10; 50 keV, 14.45; vs. PEI, 7.27; p < 0.001], [SNRbreast lesion: 40 keV, 21.01; 50 keV, 16.28; vs. PEI, 10.77; p < 0.001]). Multiple quantitative DECT parameters of malignant breast lesions were higher in the venous phase images than in the arterial phase images (p < 0.001). MEI (+) at 40 keV, ID, and Zeff reconstructions yielded the highest Likert scores for lesion conspicuity. The conspicuity of the mass margin and the visual enhancement were significantly better in 40-keV MEI (+) than in the PEI (p = 0.022, p = 0.033, respectively). Conclusion: Compared with PEI, MEI (+) reconstructions at low keV in the venous phase acquired by DECT improved the objective and subjective assessment of lesion conspicuity in patients with malignant breast lesions. MEI (+) reconstruction acquired by DECT may be helpful for the preoperative evaluation of breast cancer.

Relationship between Abnormal Hyperintensity on T2-Weighted Images Around Developmental Venous Anomalies and Magnetic Susceptibility of Their Collecting Veins: In-Vivo Quantitative Susceptibility Mapping Study

  • Yangsean Choi;Jinhee Jang;Yoonho Nam;Na-Young Shin;Hyun Seok Choi;So-Lyung Jung;Kook-Jin Ahn;Bum-soo Kim
    • Korean Journal of Radiology
    • /
    • v.20 no.4
    • /
    • pp.662-670
    • /
    • 2019
  • Objective: A developmental venous anomaly (DVA) is a vascular malformation of ambiguous clinical significance. We aimed to quantify the susceptibility of draining veins (χvein) in DVA and determine its significance with respect to oxygen metabolism using quantitative susceptibility mapping (QSM). Materials and Methods: Brain magnetic resonance imaging of 27 consecutive patients with incidentally detected DVAs were retrospectively reviewed. Based on the presence of abnormal hyperintensity on T2-weighted images (T2WI) in the brain parenchyma adjacent to DVA, the patients were grouped into edema (E+, n = 9) and non-edema (E-, n = 18) groups. A 3T MR scanner was used to obtain fully flow-compensated gradient echo images for susceptibility-weighted imaging with source images used for QSM processing. The χvein was measured semi-automatically using QSM. The normalized χvein was also estimated. Clinical and MR measurements were compared between the E+ and E- groups using Student's t-test or Mann-Whitney U test. Correlations between the χvein and area of hyperintensity on T2WI and between χvein and diameter of the collecting veins were assessed. The correlation coefficient was also calculated using normalized veins. Results: The DVAs of the E+ group had significantly higher χvein (196.5 ± 27.9 vs. 167.7 ± 33.6, p = 0.036) and larger diameter of the draining veins (p = 0.006), and patients were older (p = 0.006) than those in the E- group. The χvein was also linearly correlated with the hyperintense area on T2WI (r = 0.633, 95% confidence interval 0.333-0.817, p < 0.001). Conclusion: DVAs with abnormal hyperintensity on T2WI have higher susceptibility values for draining veins, indicating an increased oxygen extraction fraction that might be associated with venous congestion.

Deep Learning Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images

  • Yura Ahn;Jee Seok Yoon;Seung Soo Lee;Heung-Il Suk;Jung Hee Son;Yu Sub Sung;Yedaun Lee;Bo-Kyeong Kang;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.8
    • /
    • pp.987-997
    • /
    • 2020
  • Objective: Measurement of the liver and spleen volumes has clinical implications. Although computed tomography (CT) volumetry is considered to be the most reliable noninvasive method for liver and spleen volume measurement, it has limited application in clinical practice due to its time-consuming segmentation process. We aimed to develop and validate a deep learning algorithm (DLA) for fully automated liver and spleen segmentation using portal venous phase CT images in various liver conditions. Materials and Methods: A DLA for liver and spleen segmentation was trained using a development dataset of portal venous CT images from 813 patients. Performance of the DLA was evaluated in two separate test datasets: dataset-1 which included 150 CT examinations in patients with various liver conditions (i.e., healthy liver, fatty liver, chronic liver disease, cirrhosis, and post-hepatectomy) and dataset-2 which included 50 pairs of CT examinations performed at ours and other institutions. The performance of the DLA was evaluated using the dice similarity score (DSS) for segmentation and Bland-Altman 95% limits of agreement (LOA) for measurement of the volumetric indices, which was compared with that of ground truth manual segmentation. Results: In test dataset-1, the DLA achieved a mean DSS of 0.973 and 0.974 for liver and spleen segmentation, respectively, with no significant difference in DSS across different liver conditions (p = 0.60 and 0.26 for the liver and spleen, respectively). For the measurement of volumetric indices, the Bland-Altman 95% LOA was -0.17 ± 3.07% for liver volume and -0.56 ± 3.78% for spleen volume. In test dataset-2, DLA performance using CT images obtained at outside institutions and our institution was comparable for liver (DSS, 0.982 vs. 0.983; p = 0.28) and spleen (DSS, 0.969 vs. 0.968; p = 0.41) segmentation. Conclusion: The DLA enabled highly accurate segmentation and volume measurement of the liver and spleen using portal venous phase CT images of patients with various liver conditions.