• 제목/요약/키워드: Velocity-Control Trim

검색결과 15건 처리시간 0.023초

고차압 밸브의 속도제어형 트림에서 케이테이션 억제에 관한 수치적 연구 (Numerical Study on Cavitation Reduction in Velocity-Control Trim of Valve with High Pressure Drop)

  • 김대권;손채훈
    • 대한기계학회논문집B
    • /
    • 제37권9호
    • /
    • pp.863-871
    • /
    • 2013
  • 본 수치적 연구에서는 국내의 발전소에서 사용되는 일반적인 고차압 트림의 형상 중 대표적으로 사용되는 형상의 트림을 기본형 트림으로 정하여, 이를 설계한 후 캐비테이션과 유량의 관점에서 유동 특성을 살펴보았다. 실제로 운전되는 발전소계통의 운전조건을 참고하여 고차압 조건으로서 입 출구 차압을 18.7 MPa로, 온도를 $160^{\circ}C$로 설정하였다. 트림의 주요 설계 인자로서 유로의 면적, 유로의 단(stage)과 유로의 방향을 채택하여, 유량과 케비테이션 발생 특성을 개선하기 위해 기본형 트림을 재설계하였다. 개선을 위해 트림을 반경방향으로 세 영역으로 나눈 후 각 영역에서 재설계 인자를 이용하여 형상을 변경하였다. 4가지의 재설계 모델을 제안하였으며, 각 모델 형상에 대한 수치해석을 수행하였다. 유량 및 캐비테이션 발생량의 관점에서 기본형 트림과 설계개선 트림들을 비교하여 재설계 모델의 성능이 개선되었음을 확인하였다.

고차압 제어밸브 트림부 분석 및 개선방안 검토 (The Intact Evaluation of High Pressure Control Valve Trim Parts)

  • 장훈;윤인식;김영범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.581-584
    • /
    • 2008
  • At the inlet and outlet differential pressure and The fluid velocity over 32m/s are damaged (Plug, sheet ring, trim) About reduction trim parts of the control valve. AOV of the differential pressure 1,500psi become often the damage in the nuclear power plant. Damages of AOV studied CFD analysis and improvement program. Multi-stage trim designs which decrease a fluid kinetic energy are demanded and AOV parts are demanded case hardening and material change.

  • PDF

확산각이 밸브 트림 특성에 미치는 영향 (The Effect of Divergence Angle on the Control Valve Trim Characteristics)

  • 고태식;김귀순
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.32-39
    • /
    • 2013
  • The multi-stage control valve is one of the devices which controls cavitation and high pressure drop. To attain the high pressure drop, the conventional control valves adopted the multi-stage trim to avoid the occurrence of local cavitation in valves. This work studied the effect of divergence angle on the characteristics of multi-stage trim. Pressure drop and flow characteristics was calculated for the 1 passage of multi-staged trim by using the FLUENT 6.3.26. The result showed that the pressure drop is significantly influenced by the divergence angle of multi-stage trim. In addition, the pressure drop increased consistently as the Reynolds number and divergence angle increases.

항공기용 하니콤 트림판넬의 다채널 능동제어 (Multichannel Active Control of Honeycomb Trim Panels for Aircrafts)

  • 홍진숙
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1252-1261
    • /
    • 2006
  • This paper summarizes theoretical work on the multichannel decentralized feedback control of sound radiation from aircraft trim panels using piezoceramic actuators. The aircraft trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. It is motivated by the localization of reduction in vibration of single channel active trim panels. 12-channel decentralized feedback control systems are investigated in terms of the reduction of noise and vibration for three configurations of sensor actuator pairs. Local coupling of the closely-spaced sensor and actuator pairs was modeled using single degree of freedom systems. The multichannel control system is characterized using the state-space model. For the stability point of view, the relative stability or robustness is evaluated by comparing the real part of eigenvalues of the system matrix for the three configurations. The control performance is also evaluated and compared for the three configurations. It is found that the multichannel system can lead to the globalization of the reduction in vibration and radiated noise. It does not appear to yield a significant improvement in the vibration because of decreased gain margin. However, the reduction in the radiated noise is remarkably improved due to the variation of the vibration pattern with the actuation configurations.

항공기용 하니콤 트림판넬의 능동제어 (Active Control of Honeycomb Trim Panels for Aircrafts)

  • ;정의봉;홍진숙
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.464-473
    • /
    • 2006
  • This paper summarises theoretical and experimental work on the feedback control of sound radiation from honeycomb panels using piezoceramic actuators. It is motivated by the problem of sound transmission in aircraft, specifically the active control of trim panels. Trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. Local coupling of the closely-spaced sensor and actuator was observed experimentally and modelled using a single degree of freedom system. The effect of the local coupling was to roll-off the response between the actuator and sensor at high frequencies, so that a feedback control system can have high gain margins. Unfortunately, only relatively poor global performance is then achieved because of localisation of reduction around the actuator. This localisation prompts the investigation of a multichannel active control system. Globalised reduction was predicted using a model of 12 channel direct velocity feedback control. The multichannel system, however, does not appear to yield a significant improvement in the performance because of decreased gain margin.

  • PDF

속도 제어형 트림의 단위 요소 유로의 유동특성에 관한 수치적 연구 (Numerical Study of Flow Characteristics in Elementary Paths of Velocity-Control Trim)

  • 김대권;손채훈
    • 대한기계학회논문집B
    • /
    • 제35권3호
    • /
    • pp.245-253
    • /
    • 2011
  • 속도 제어형 트림을 구성하는 기본 유로 요소로서 $90^{\circ}$의. 굴곡을 갖는 유로를 선택하여 폭과 길이가 상사성을 가지도록 설정하고 0, 4, 8 회의 굴곡을 갖는 총 48개의 단위 유로 요소에 대해 유동 해석을 수행하였다. 먼저, 동일 요소에 대한 실험과 수치해석 결과를 비교하여 수치해석 접근방법의 타당성을 검증하였다. 일정한 차압에 대해 굴곡횟수에 따른 유량을 계산한 결과, 굴곡이 없으면 유로의 길이가 증가함에 따라 유량이 감소하였다. 굴곡이 있는 경우, 유로가 길어지면 유량이 증가하다가 감소하였다. 케비테이션의 억제의 관점에서 압력장을 분석하였고, 이로부터 동일한 굴곡횟수를 가질 경우 유로가 길수록 유로를 따라 발생하는 압력 강하 특성이 우수함을 알았다. 또한, 유로의 길이가 같은 경우에는 굴곡횟수가 많을수록 압력이 완만히 감소하는 특성을 가짐을 알 수 있었다.

해양플랜트용 고압·고차압 제어밸브의 성능 평가 (Performance Evaluation of High Pressure and High Pressure Drop Control Valve for Offshore Plants)

  • 김규철;이치우
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.767-773
    • /
    • 2013
  • A high-pressure, high-pressure drop control valve, which transforms the power transfer of a system by reducing the inlet pressure of 345bartothe outlet pressure of 112bar, is a fundamental component in an offshore plant process. With the increasingly growing market share of the maritime industry, this valve has been expected to be a high-value-added product. This study not only analyzes the relation between pressure drop and fluid velocity in a trim by using fluid analysis, but also examines the possibility of cavitation in a valve in addition to the plot for the extension of lifespan. Based on the analysis results, the design and production method of the valve are established, and accordingly, performance evaluation is carried out. It is demonstrated that the pressure drop from 345bar to 112bar is more feasible in the presence of the trim, which can induce a continuous and diminutive pressure drop in order to prevent cavitation in a high-pressure drop control valve. Furthermore, despite the fluid velocity near a seatring being found to be over 30m/s, the lifespan of the valve is determined to be adequate considering the operation condition of a prototype valve of 80%.

실내소음 저감을 위한 능동패널의 체속도 제어 (Volume Velocity Control of Active Panel to Reduce Interior Noise)

  • 김인수
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.33-41
    • /
    • 1999
  • This paper presents a method of actively controlling the interior noise by a trim panel with hybrid feedforward-feedback control loop. The control technique is designed to minimize the vibration of panel whose motion is limited to that of a piston (out-of-plane motion). The hybrid controller consists of an adaptive feedforward controller in conjunction with a linear quadratic Gaussian (LQG) feedback controller. In order to maintain control performance of both persistent and transient disturbances, the feedback loop speeds up the adaptation rate of feedforward controller by improving damping capacity of secondary plant related with the adaptation rule. Numerical simulation and experimental result indicate that the hybrid controller is a more effective method for reducing the vibration of the panel (and therefore the interior noise) compared to using feedforward controller.

  • PDF

고차압 제어용 글로브 밸브 트림 내부의 3차원 유동장 해석 (Numerical Analysis of the 3-D Flow Field in a Globe Valve Trim under High Pressure Drop)

  • 윤준용;변성준;양재모;이도형
    • 한국유체기계학회 논문집
    • /
    • 제4권3호
    • /
    • pp.14-20
    • /
    • 2001
  • Numerical analysis of the three dimensional turbulent flow field in a complex valve trim is carried out to confirm the possibility whether this simulation tool can be used as a design tool or not. The simulation of the incompressible flow in a glove valve is performed by using the commercial code. CFD-ACEA utilizes the finite volume approach as a discretization scheme, and the pressure-velocity coupling is made from SIMPLEC algorithm in it. Four flow cases of the control valve are investigated, and the valve flow coefficient for each case is compared with the experimental data. Simulation results show a good agreement with the experiments, and it is observed that the cavitation model improves the simulation results.

  • PDF

보일러 급수펌프용 1500lb 고차압 제어밸브 유량시험 및 수치해석에 관한 연구 (A Study on the Flow Coefficient Test and Numerical Analysis about 1500lb High-Pressure Drop Control Valve for Boiler Feedwater Pump)

  • 이권일;장훈;이치우
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.541-547
    • /
    • 2022
  • Before making a prototype, we predicted the inlet/outlet differential pressure and flow coefficient, which are the most basic design data for the valve through the design and numerical analysis of the trim, which is the most important in the localization development of the 1500Ib high differential pressure control valve used for boiler feed water. As a result, the design value and the analysis value were found to be about 98% similar. The flow field within the fluid velocity of 23m/s to prevent cavitation was also found. The result of the numerical analysis on thermal stress due to the characteristics of valves exposed to high temperatures showed that it was found to be about 18% less than the allowable stress of the bolt fixing the trim. When all loads such as pressure, self-weight, and vibration are applied, however, it is judged to go beyond the currently calculated thermal stress, exceeding the allowable stress.