• Title/Summary/Keyword: Velocity vector

Search Result 543, Processing Time 0.022 seconds

Flow Characteristics Analyses within the Electrolysis Reactor using the CFD Simulation Technique (CFD 모사 기법을 이용한 전해반응기 내부 흐름 특성 분석)

  • Jeong, Jongsik;Lee, Seungjae;Lee, Jaebok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.745-753
    • /
    • 2016
  • The objective of this study was to investigate design factors of the electrolysis reactor through the CFD(computational fluid dynamics) simulation technique. Analyses of velocity vector, streamline, chloride ion concentration distribution showed differences in flow characteristics between the plate type electrode and the porous plate type electrode. In case of the porous plate type electrode, chlorine gas bubbles generated from the anode made upward density flow with relatively constant velocity vectors. Electrolysis effect was more expected with the porous plate type electrode from the distribution of chloride ion concentration. The upper part of the electrolysis reactor with the porous plate type electrode had comparatively low chloride concentration because chloride was converted to the chlorine gas formation. Decreasing the size and increasing total area of rectifying holes in the upper part of cathodes, and widening the area of the rectifying holes in the lower part of cathodes could improve the circulation flow and the efficiency of electrolysis reactor.

A Numerical Study of the 3-D Flow in the Primary Calcinator of Porcelain (도자기 1차 소성로의 3차원 유동장 수치해석에 관한 연구)

  • 김성수;홍성선;박지영;오창섭
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 1996
  • A numerical simulation on a primary calcinator of porcelain was performed with using Fluent to calculate the heat efficiency by studying velocity vector and temperature profile according to variables such as the location of outlet and porcelain. Control-Volume based Finite Difference Method and Up-wind scheme are used for discretization of differential equation. SIMPLEC Algorithm and standard k-$\varepsilon$ turbulent model are selected to resolve the pressure-velocity coupling and the turbulent. The result of simulation showed that the whole velocity vector field in a calcinator was varied greatly according to the location of outlet. But the whole temperature profile at each zone was still high regardless of the location of outlet because of the radiation. But the temperature of a case with a outlet at sidepart of preheating or cooling zone was little high compared to the case with a outlet on the top of preheating zone. The velocity vector field and temperature profile in a calcinator were almost not affected by the location of porcelain, but the temperature inside a porcelain was much affected according to the place where it was located. The heat efficiency in a calcinator was 44.6% and the gas temperature in the outlet was about 1000 K.

  • PDF

Discontinuity in GNSS Coordinate Time Series due to Equipment Replacement

  • Sohn, Dong-Hyo;Choi, Byung-Kyu;Kim, Hyunho;Yoon, Hasu;Park, Sul Gee;Park, Sang-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.287-295
    • /
    • 2022
  • The GNSS coordinate time series is used as important data for geophysical analysis such as terrestrial reference frame establishment, crustal deformation, Earth orientation parameter estimation, etc. However, various factors may cause discontinuity in the coordinate time series, which may lead to errors in the interpretation. In this paper, we describe the discontinuity in the coordinate time series due to the equipment replacement for domestic GNSS stations and discuss the change in movement magnitude and velocity vector difference in each direction before and after discontinuity correction. To do this, we used three years (2017-2019) of data from 40 GNSS stations. The average magnitude of the velocity vector in the north-south, east-west, and vertical directions before correction is -12.9±1.5, 28.0±1.9, and 4.2±7.6 mm/yr, respectively. After correction, the average moving speed in each direction was -13.0±1.0, 28.2±0.8, and 0.7±2.1 mm/yr, respectively. The average magnitudes of the horizontal GNSS velocity vectors before and after discontinuous correction was similar, but the deviation in movement size of stations decreased after correction. After equipment replacement, the change in the vertical movement occurred more than the horizontal movement variation. Moreover, the change in the magnitude of movement in each direction may also cause a change in the velocity vector, which may lead to errors in geophysical analysis.

Development of Physics Simulation for Augmented Reality Billiards Content (증강현실 당구 콘텐츠를 위한 물리 시뮬레이션 개발)

  • Kim, Hong-Jik;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.150-159
    • /
    • 2022
  • In this paper, we propose a physics simulation for augmented reality (AR) billiards content. The characteristics of the physics simulation for the proposed AR billiards content are as follows. First, physical equations are derived by calculating the force and moment of inertia applied to the billiards ball to realize the motion of the billiards ball similar to the real one in the AR environment. Then, we determine the velocity and angular velocity of the virtual billiards ball associated with the rotation of the virtual billiards ball with respect to the impact point. Second, using some vectors such as incidnet vector, normal vector, reflection vector, the trajectory of the virtual billiards ball would be implement. these equations are applied to AR environment so that AR billiards content could be implement. This physics simulation allows users to feel like the real world using a virtual pool table and induce them to interact with the real environment. As a result of the experiment, the accuracy range between the path of the real billiards ball and the path of the virtual billiards ball was calculated to be 97.75% to 99.11%. Therefore, it was determined that the performance of the physics simulation for the AR billiards content proposed in this paper performs similarly to the path of the real billiards ball.

Dynamic Contact Analysis Satisfying All the Compatibility Conditions on the Contact Surface (접촉면에서 모든 적합조건을 만족시키는 동적인 접촉현상의 해법)

  • 이기수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1243-1250
    • /
    • 1995
  • For the numerical solution of frictional dynamic contact problems, correct contact points and displacements are determined by iteratively reducing the displacement error vector monotonically toward zero And spurious oscillations are prevented from the solution by enforcing the velocity and acceleration compatibilities of the contact points with the corresponding error vectors. Numerical simulations are conducted to demonstrate the accuracy of the solution and the necessity of the velocity and acceleration compatibilities on the contact surface.

The Vibration Velocity and Vibration Level of Near-field Blasting Vibration in an Urban Blasting Site (근접장 발파진동에서 진동속도와 진동레벨의 비교)

  • Lee, Yeon-Soo;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.918-923
    • /
    • 2005
  • The vibration level (dB(V)) and vibration velocity (cm/sec) on the ground and buildings due to the differences of the measuring sites from the blasting source was investigated. To compare with vibration level and vibration velocity theirs magnitude was not surely directly proportional and vibration velocity 0.1 cm/sec was $45\~50$ dB(V). The difference between the measured vibration level and the calculated vibration level by Ejima's equation using vibration velocity PVS(peak vector sum) showed $21.0\~30.9$ dB(V) on the ground, $15.3\~23.6$ dB(V) on the apartment, respectively. And the correlation of vibration velocity and nitration level at the measuring sites of lower altitude showed higher than that of higher altitude.

Vector Controlled Inverter for Elevator Drive (ELEVATOR 구동용 VECTOR 제어 인버터)

  • Shin, H.J.;Jang, S.Y.;Lee, S.J.;Lee, S.D.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.627-630
    • /
    • 1991
  • This study is about vector controlled inverter for high quality elevator drive that is to improve the settling accuracy of elevator car and passenger's comfort in commercial buildings. In this study, an instantaneous space vector control type inverter was used to reduce the torque ripple ant to improve the velocity follow-up. This method calculates Instantaneous actual output torque and flux of induction motor by voltage and current, then compares them with a reference values by a speed regulator. The outputs of comparators select a switching mode, for an optimal voltage vector. Also, this study used IGBT (Insulated Gate Bipolar-Transistor), a high speed switching element, to reduce sound noise level, and DSP (Digital Signal Processor) was used to improve the reliability of the control circuit by fully digitalization.

  • PDF

Development of Single-Frame PIV Velocity Field Measurement Technique Using a High Resolution CCD Camera (고해상도 CCD카메라를 이용한 Single-Frame PIV 속도장 측정기법 개발)

  • Lee, Sang-Joon;Shin, Dae-Sig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Although commercial PIV systems have been widely used for the non-intrusive velocity field measurement of fluid flows, they are still under development and have considerable room for improvement. In this study, a single-frame double-exposure PIV system using a high-resolution CCD camera was developed. A pulsed Nd:Yag laser and high-resolution CCD camera were synchronized by a home-made control circuit. In order to resolve the directional ambiguity problem encountered in the single-frame PIV technique, the second particle image was genuinely shifted in the CCD sensor array during the time interval dt. The velocity vector field was determined by calculating the displacement vector at each interrogation window using cross-correlation with 50% overlapping. In order to check the effect of spatial resolution of CCD camera on the accuracy of PIV velocity field measurement, the developed PIV system with three different resolution modes of the CCD camera (512 ${\times}$ 512, lK ${\times}$ IK, 2K ${\times}$ 2K) was applied to a turbulent flow which simulate the Zn plating process of a steel strip. The experimental model consists of a snout and a moving belt. Aluminum flakes about $1{\mu}m$ diameter were used as scattering particles for the liquid flow in the zinc pot and the gas flow above the zinc surface was seeded with atomized olive oil with an average diameter of 1-$3{\mu}m$. Velocity field measurements were carried out at the strip speed $V_s$=1.0 m/s. The 2K ${\times}$ 2K high-resolution PIV technique was significantly superior compared to the smaller pixel resolution PIV system. For the cases of 512 ${\times}$ 512 and 1K ${\times}$ 1K pixel resolution PIV system, it was difficult to get accurate flow structure of viscous flow near the wall and small vortex structure in the region of large velocity gradient.

Measurement of vertical migration speed of Sound Scattering Layer using an bottom mooring type Acoustic Doppler Current Profiler (해저설치형 음향도플러유향유속계를 이용한 음향산란층의 연직이동속도 측정)

  • Jo, Hyeon-Jeong;Lee, Kyoung-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.449-457
    • /
    • 2010
  • This study shows that the vertical migration speed of sound scattering layers (SSLs), which is distributed in near Funka Bay, were measured by 3D velocity components acquired from a bottom moorng ADCP. While the bottom mooring type has a problem to measure the velocity vectors of sound scattering layer distributed near to surface, both the continuous vertical migration patterns and variability of backscatterers were routinely investigated as well. In addition, the velocity vectors were compared with the vertical migration velocity estimated from echograms of Mean Volume Backscattering Strength, and estimated to produce observational bias due to SSLs which is composed of backscatterers such as euphausiids, nekton, and fishes have swimming ability.

A Study on The Flow Characteristics according to Changes of Rod Shape on Impinging Jet (충돌 제트에서 Rod 형상 변화에 따른 주변 유동 특성연구)

  • Son Seung-Woo;Lee Sang-Bum;;Song Min-Geun;Ju Eun-Sun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.525-528
    • /
    • 2002
  • The objective of this study is to investigate characteristics of flow by the Rod shape and the choice of the turbulent intensity enhancement section. The Rod was setup vertically to the way of a nozzle exit flow and nozzle diameter is 17mm. Rod height is 5mm and its shapes are square, triangle, and circle. Characteristics of fluid such as velocity vector distribution, kinetic energy, turbulent intensity, and etc. were visualized, observed, and considered at 3 kinds of Re No. such as 2000, 3000, and 4000. The characteristics of flow field were investigated in each case of the distance rate from the nozzle exit to impinging plate(H/B=8, 10). The temperature of water is $20^{\circ}E$ and the measurement region divided by 3 sections(I, II, III). The nozzle diameter is 17mm. As the experimental result by PIV measurement, scale of the vector profile showed a tendency to an unbalance parabola distribution as increasing of the Re No. When the impinging plates such as square, triangle, and circle shape are installed respectively in front of the flow accelerated, rod shape of the highest velocity vector is circle shape and rod shape of the highest turbulent Intensity is square shape.

  • PDF