• Title/Summary/Keyword: Velocity variance

Search Result 139, Processing Time 0.027 seconds

평행식 진동탄환 암거 천공기의 연구 (IV)(V)-실기 설계 제작 및 보장실험-Development of Balanced-Type Oscillating Mole Drainer(IV)(V)

  • 김용환;이승규;서상용
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-24
    • /
    • 1977
  • This paper is the forth and fifth one of the study on balanced type oscillating mole drainer. In the light of the results from previous reports about the model tests, some design criteria were established and a prototype machine was set up for experimental purpose. Motion characteristics and functionof the each parts of the machine were checked and analyzed. After that, performance tests of the prototype machine were carried out in thefield. Obtained results are summarized as follows ; 1. Ten centimeter of the bullet diameter was determined so as to be able to attach it to the tractors with capacity of 30 PS to 40 PS. 2. To maintain the balance between the moments of the front shank and rear shank, the oscillating amplitude of the rear bullet was determined to be larger than that of the front bullet. At the same time , the oscillating direction of the rear bullet was designed with the inclines of ten to thirty degrees. 3. An octagonal dynamo transduced was developed for measuring the compressive force of the upper link is measuring the draft force of the machine. Acceptable linear relationship between forces and strain responses from O.D.T. was obtained. 4. Analysing the balancing mechanism of the acting part of the machine , it was found that the total draft force of the machine was equal to the difference between the sum of the draft force produced from the right and left side bending moments of the lower drawber and the compressive force on the upper link. 5. There are acceptable linear relationship between the strain and twisting moment by driving shaft, and between strain and shank moment. Above results enable us to carry out the field experiment with prototype machine. 6. When the test machine was used in the field, it was possible to reduce the oscillating acceleration by forty percent in average as compared it with the single bullet mole drainer. 7. When the test machine was used under the oscillating condition, the dratt torce was reduced by 27 percent to 59 percent as compared it with the test machine under non-oscillating condition, while the draft force was increased by 7 percent to 20 percent as compared it with the mole drainer having oscillating single bullet. The reasoning behind this fact was considered as the resistance force due to the rear shank and bullet. 8. As the amplitude and frequency of the bullet were increased, the torque was increased accordingly. This tendency could be varied with the various characteristics of the given soils. And the larger frequency and amplitute, the more increasing oscil\ulcornerlating power but decreasing draft brce were needed, and draft force was increased as the velocity was increased.9. When the amplitude of the rear bullet was designed to be larger than that of the front bullet, the minimum value of the moment was lowered and oscillating acceleration was reduced. And when the oscillating direction of the rear bullet was declined back\ulcornerwards, oscillating acceleration was increased along with the increasing angle of decli\ulcornernation. When the test machine was operated in high speed, the difference between maximum moments and minimum ones became narrow. This varying magnitude of moments appeared on the moment oscillogram seems to be correlated to the oscillating acceleration and draft force. 10. From the analysis of variance, it was found that those factors such as frequency, amplitude, and operating velocity significantly affected in the oscillating acceleration, the draft resistance, the torque, the moment, and the total power required. And interaction between frequency and amplitude affected in the oscillating acceleration. 11. Within the given situation of this study, the most preferable operating conditions of the test machine were 7 Hz in oscillating frequency, 0.54 m/sec in operating velocity, and 39.1 mm in oscillating amplitude of front and rear bullets. However, it is necessary to select the proper frequency and magnitude of oscillation depending on the soil properties of the field in which the mole drainer is practiced by use of a bal1nced type oscillating mole drainer. 12. It is recommended that a comparative study of the mole drainers would be performed in the near future using two separate balanced oscillating bullet with the one which is operated by oscillating the movable bullet in a single cylinder or other balanced type which may be single oscillating bullet with spring, damper or balancing weight, and that of thing. To expand the applicability of the balanced type oscillating mole drainer in practical use, it is suggested to develop a new mechanism which perform mole drain with vinyl pipe or filling material such as rice hull.

  • PDF

Performance Characteristics of PM10 and PM2.5 Samplers with an Advanced Chamber System (챔버 기술 개발을 통한 PM10과 PM2.5 시료채취기의 수행 특성)

  • Kim, Do-Hyeon;Kim, Seon-Hong;Kim, Ji-Hoon;Cho, Seung-Yeon;Park, Ju-Myon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.739-746
    • /
    • 2010
  • The purposes of this study are 1) to develop an advanced chamber system within ${\pm}10%$ of air velocity at the particulate matter (PM) collection area, 2) to research theoretical characteristics of PM10 and PM2.5 samplers, 3) to assess the performance characteristics of PM10 and PM2.5 samplers through chamber experiments. The total six one-hour experiments were conducted using the cornstarch with an mass median aerodynamic diameter (MMAD) of $20\;{\mu}m$ and an geometric standard deviation of 2.0 at the two different air velocity conditions of 0.67 m/s and 2.15 m/s in the chamber. The aerosol samplers used in the present study are one APM PM10 and one PM2.5 samplers accordance with the US federal reference methods and specially designed three mini-volume aerosol samplers (two for PM10 and one for PM2.5). The overall results indicate that PM10 and PM2.5 mini-volume samplers need correction factors of 0.25 and 0.39 respectively when APM PM samplers considered as reference samplers and there is significant difference between two mini-volume aerosol samplers when a two-way analysis of variance is tested using the measured PM10 mass concentrations. The PM10 and PM2.5 samplers with the cutpoints and slopes (PM10: $10{\pm}0.5\;{\mu}m$ and $1.5{\pm}0.1$, PM2.5: $2.5{\pm}0.2\;{\mu}m$ and $1.3{\pm}0.03$) theoretically collect the ranges of 86~114% and 64~152% considering the cornstarch characteristics used in this research. Furthermore, the calculated mass concentrations of PM samplers are higher than the ideal mass concentrations when the airborne MMADs for the cornstarch used are smaller than the cutpoints of PM samplers and the PM samplers collected less PM in another case. The chamber experiment also showed that PM10 and PM2.5 samplers had the bigger collection ranges of 37~158% and 55~149% than the theocratical calculated mass concentration ranges and the relatively similar mass concentration ranges were measured at the air velocity of 2.15 m/s comparing with the 0.67 m/s.

The Effect of Exercise Intensity on Muscle Activity and Kinematic Variables of the Lower Extremity during Squat

  • Jung, Jae-Hu;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.197-203
    • /
    • 2017
  • Objective: The purpose of this study was to determine how exercise intensity affects muscle activity and kinematic variables during squat. Method: Fifteen trainers with >5 years of experience were recruited. For the electromyography (EMG) measurements, four surface electrodes were attached to both sides of the lower extremity to monitor the rectus femoris (RF) and biceps femoris. Three digital camcorders were used to obtain three-dimensional kinematics of the body. Each subject performed a squat in different conditions (40% one-repetition maximum [40%1RM], 60%1RM, and 80%1RM). For each trial being analyzed, three critical instants and two phases were identified from the video recording. For each dependent variable, one-way analysis of variance with repeated measures was used to determine whether there were significant differences among the three different conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results: The results showed that the average integrated EMG values of the RF were significantly greater in 80%1RM than in 40%1RM during the extension phase. The temporal parameter was significantly longer in 80%1RM than in 40%1RM and 60%1RM during the extension phase. The joint angle of the knee was significantly greater in 80%1RM than in 40%1RM at flexion. The range of motion of the knee was significantly less in 80%1RM than in 40%1RM and 60%1RM during the flexion phase and the extension phase. The angular velocity was significantly less in 80%1RM than in 40%1RM and 60%1RM during the extension phase. Conclusion: Generally, the increase of muscle strength decreases the pace of motion based on the relation between the strength and speed of muscle. In this study, we also found that the increase of exercise intensity may contribute to the increase of the muscle activity of the RF and the running time in the extension phase during squat motion. We observed that increased exercise intensity may hinder the regulation of the range of motion and joint angle. It is suitable to perform consistent movements while controlling the proper range of motion to maximize the benefit of resistance training.

Oil Spill Visualization and Particle Matching Algorithm (유출유 이동 가시화 및 입자 매칭 알고리즘)

  • Lee, Hyeon-Chang;Kim, Yong-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.53-59
    • /
    • 2020
  • Initial response is important in marine oil spills, such as the Hebei Spirit oil spill, but it is very difficult to predict the movement of oil out of the ocean, where there are many variables. In order to solve this problem, the forecasting of oil spill has been carried out by expanding the particle prediction, which is an existing study that studies the movement of floats on the sea using the data of the float. In the ocean data format HDF5, the current and wind velocity data at a specific location were extracted using bilinear interpolation, and then the movement of numerous points was predicted by particles and the results were visualized using polygons and heat maps. In addition, we propose a spill oil particle matching algorithm to compensate for the lack of data and the difference between the spilled oil and movement. The spilled oil particle matching algorithm is an algorithm that tracks the movement of particles by granulating the appearance of surface oil spilled oil. The problem was segmented using principal component analysis and matched using genetic algorithm to the point where the variance of travel distance of effluent oil is minimized. As a result of verifying the effluent oil visualization data, it was confirmed that the particle matching algorithm using principal component analysis and genetic algorithm showed the best performance, and the mean data error was 3.2%.

Optimization of biomethane production by biogas upgrading process using response surface mothodolgy (반응표면분석을 이용한 바이오가스 고질화공정을 통한 바이오메탄)

  • Park, Seong-Bum;Sung, Hyun-Je;Shim, Dong-Min;Kim, Nack-Joo
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.62-73
    • /
    • 2014
  • This research was focused to apply response surface methodology for optimization of bio-methane production by biogas upgrading process. Methane concentration(Y1) and methane efficiency(Y2) on biogas upgrading process were mathematically described as being modeled by the use of the Box-Behnken design on response surface methodology. The results of ANOVA(analysis of variance) about models, the probability value of the methane concentration and methane recovery response surface model are 0.0001 and 0.0001, respectively and coefficient of determination($R^2$) are 0.9788 and 0.9710, respectively. The response surface model is proved of high reliability and suitability. The operation pressure had the greatest influence to methane concentration than other operation parameters and the PSA rotary valve velocity had the greatest influence to methane recovery than other operation parameters. Optimal condition of biogas upgrading process for production of $100Nm^3/hr$ bio-methane were operation pressure 8.0bar and outlet flow rate 31.55RPM, respectively. At that operation condition the methane concentration of bio-methane was 97.13% and methane recovery in biogas upgrading process was 75.89%.

Modeling of Visual Attention Probability for Stereoscopic Videos and 3D Effect Estimation Based on Visual Attention (3차원 동영상의 시각 주의 확률 모델 도출 및 시각 주의 기반 입체감 추정)

  • Kim, Boeun;Song, Wonseok;Kim, Taejeong
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.609-620
    • /
    • 2015
  • Viewers of videos are likely to absorb more information from the part of the screen that attracts visual attention. This fact has led to the visual attention models that are being used in producing and evaluating videos. In this paper, we investigate the factors that are significant to visual attention and the mathematical form of the visual attention model. We then estimated the visual attention probability using the statistical design of experiments. The analysis of variance (ANOVA) verifies that the motion velocity, distance from the screen, and amount of defocus blur affect human visual attention significantly. Using the response surface modeling (RSM), we created a visual attention score model that concerns the three factors, from which we calculate the visual attention probabilities (VAPs) of image pixels. The VAPs are directly applied to existing gradient based 3D effect perception measurement. By giving weights according to our VAPs, our algorithm achieves more accurate measurement than the existing method. The performance of the proposed measurement is assessed by comparing them with subjective evaluation as well as with existing methods. The comparison verifies that the proposed measurement outperforms the existing ones.

Effects of Wearing Toe Braces of Hallux Valgus on Gait during Virtual Environment Simulation (무지외반증 발가락 교정기 착용 여부가 가상 환경 시뮬레이션 시 보행에 미치는 영향)

  • Dong-Su Kim;Da-Eun Lee;Hyun-A Shin;Ji-Won Jeon;Young-Keun Woo
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2023
  • Purpose: Hallux valgus (HV) is one of the most common chronic foot disorders, occurring when the first toe deviates laterally toward the other toe. HV impairs muscle strength and affects gait function (postural sway and gait speed). Thus, this study aims to investigate using the FDM system the effect of wearing braces on gait while wearing a virtual reality (VR) device. Methods: This study was conducted on 28 healthy adults with HV of 15 degrees or more. To compare differences in walking, depending on whether a toe brace can be worn, the subject walked without wearing anything, walked after wearing the VR device, and walked after wearing the VR device and the toe brace, and the FDM system was used for the gait ability measurement analysis. Results: As a result of a one-way repeated analysis of variance, the walking speed-related variables (cadence, velocity, etc.) in the HV group were higher during comfortable walking. In addition, walking while wearing a VR device and walking while wearing a VR device and a toe brace demonstrated more significant values in terms of six gait parameters (double stance phase, loading response, stage, stage, stage, and stage). The maximum pressure of the forefoot was significantly reduced when walking while wearing a VR device and a toe brace compared to comfortable walking, but in all variables, there was no statistically significant difference between walking while wearing a VR device and walking while wearing a VR device and a toe brace. Conclusion: Orthosis with a VR device during gait (OVG) and gait with a VR device (GVR) affect gait in HV patients. However, there was no significant difference between GVR and OVG. Thus, it is necessary to conduct experiments on various HV angles and increase the duration of wearing the toe brace.

Monte-Carlo Simulations of Non-ergodic Solute Transport from Line Sources in Isotropic Mildly Heterogeneous Aquifers (불균질 등방 대수층 내 선형오염원으로부터 기원된 비에르고딕 용질 이동에 관한 몬테카를로 시뮬레이션)

  • Seo Byong-min
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.20-31
    • /
    • 2005
  • Three dimensional Monte-Carlo simulations of non-ergodic transport of a lion-reactive solute plume by steady-state groundwater flow under a uniform mean velocity in isotropic heterogeneous aquifers were conducted. The log-normally distributed hydraulic conductivity, K(x), is modeled as a random field. Significant efforts are made to reduce tile simulation uncertainties. Ensemble averages of the second spatial moments of the plume and plume centroid variances were simulated with 1600 Monte Carlo runs for three variances of log K, ${\sigma}_Y^2=0.09,\;0.23$, and 0.46, and three dimensionless lengths of line plume sources normal to the mean velocity. The simulated second spatial moment and the plume centroid variance in longitudinal direction fit well to the first order theoretical results while the simulated transverse moments are generally larger than the first order results. The first order theoretical results significantly underestimated the simulated dimensionless transverse moments for the aquifers of large ${\sigma}_Y^2$ and large dimensionless time. The ergodic condition for the second spatial moments is far from reaching in all cases simulated, and transport In transverse directions may reach ergodic condition much slower than that in longitudinal direction. The evolution of the contaminant transported in a heterogeneous aquifer is not affected by the shape of the initial plume but affected mainly by the degree of the heterogeneity and the size of the initial plume.

Estimation of the Convective Boundary Layer Height Using a UHF Radar (UHF 레이더를 이용한 대류 경계층 고도의 추정)

  • 허복행;김경익
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2001
  • The enhancement of the refractive index structure parameter $C_n^2$ often occurs where vertical gradients of virtual potential temperature ${\theta}_v$ and mixing ratio q have their maximum values. The $C_n^2$ can be a very useful parameter for estimating the convective boundary layer(CBL) height. The behavior of $C_n^2$ peaks, often used to locate the height of mixed layer, was investigated in the present study. In addition, a new method to determine the CBL height objectively using both $C_n^2$ and vertical air velocity variance ${\sigma}_w$ data of UHF radar was also suggested. The present analysis showed that the $C_n^2$ peaks in the backscatter intensity profiles often occurred not only at the top of the CBL but also at the top of a residual layer or at a cloud layer. The $C_n^2$ peaks corresponding to the CBL heights were slightly lower than the CBL heights derived from rawinsonde sounding data when vertical mixing owing to weak solar heating was not significant and the height of strong vertical ${\theta}_v$ gradients were not consistent with that of strong vertical q gradients. However, the $C_n^2$ peaks corresponding to the CBL heights were in good agreement with the rawinsonde-estimated CBL hegiths when vertical mixing owing to solar heating was significant and the vertical gradient of both ${\theta}_v$ and q in the entrainment zone was very strong. The maximum backscatter intensity method, which determines the height of $C_n^2$ peak as the CBL height, correctly estimated the CBL height when the $C_n^2$ profile had single peak, but this method erroneously estimated the CBL height when there was a residual layer or a cloud layer over the top of the CBL. The new method distinguished when there the CBL height from the peak due a cloud layer or a residual layer using both $C_n^2$ and ${\sigma}_w$ data, and correctly estimated the CBL height. As for estimation of diurnal variation of the CBL height, the new method backscatter intensity method even if the vertical profile of backscatter intensity had two peaks from the CBL height and a residual layer or a cloud layer.