• Title/Summary/Keyword: Velocity fluctuations

Search Result 236, Processing Time 0.024 seconds

A proposed technique for determining aerodynamic pressures on residential homes

  • Fu, Tuan-Chun;Aly, Aly Mousaad;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Yeo, DongHun;Simiu, Emil
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.27-41
    • /
    • 2012
  • Wind loads on low-rise buildings in general and residential homes in particular can differ significantly depending upon the laboratory in which they were measured. The differences are due in large part to inadequate simulations of the low-frequency content of atmospheric velocity fluctuations in the laboratory and to the small scale of the models used for the measurements. The imperfect spatial coherence of the low frequency velocity fluctuations results in reductions of the overall wind effects with respect to the case of perfectly coherent flows. For large buildings those reductions are significant. However, for buildings with sufficiently small dimensions (e.g., residential homes) the reductions are relatively small. A technique is proposed for simulating the effect of low-frequency flow fluctuations on such buildings more effectively from the point of view of testing accuracy and repeatability than is currently the case. Experimental results are presented that validate the proposed technique. The technique eliminates a major cause of discrepancies among measurements conducted in different laboratories. In addition, the technique allows the use of considerably larger model scales than are possible in conventional testing. This makes it possible to model architectural details, and improves Reynolds number similarity. The technique is applicable to wind tunnels and large scale open jet facilities, and can help to standardize flow simulations for testing residential homes as well as significantly improving testing accuracy and repeatability. The work reported in this paper is a first step in developing the proposed technique. Additional tests are planned to further refine the technique and test the range of its applicability.

Compressible Simulation of Rotor-Stator Interaction in Pump-Turbines

  • Yan, Jianping;Koutnik, Jiri;Seidel, Ulrich;Hubner, Bjorn
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.315-323
    • /
    • 2010
  • This work investigates the influence of water compressibility on pressure pulsations induced by rotor-stator interaction (RSI) in hydraulic machinery, using the commercial CFD solver ANSYS-CFX. A pipe flow example with harmonic velocity excitation at the inlet plane is simulated using different grid densities and time step sizes. Results are compared with a validated code for hydraulic networks (SIMSEN). Subsequently, the solution procedure is applied to a simplified 2.5-dimensional pump-turbine configuration in prototype with different speeds of sound as well as in model scale with an adapted speed of sound. Pressure fluctuations are compared with numerical and experimental data based on prototype scale. The good agreement indicates that the scaling of acoustic effects with an adapted speed of sound works well. With respect to pressure fluctuation amplitudes along the centerline of runner channels, incompressible solutions exhibit a linear decrease while compressible solutions exhibit sinusoidal distributions with maximum values at half the channel length, coinciding with analytical solutions of one-dimensional acoustics. Furthermore, in compressible simulation the amplification of pressure fluctuations is observed from the inlet of stay vane channels to the spiral case wall. Finally, the procedure is applied to a three-dimensional pump configuration in model scale with adapted speed of sound. Normalized Pressure fluctuations are compared with results from prototype measurements. Compared to incompressible computations, compressible simulations provide similar pressure fluctuations in vaneless space, but pressure fluctuations in spiral case and penstock may be much higher.

Influences of Climate Factors and Water Temperature in Squid Spawning Grounds on Japanese Common Squid (Todarodes pacificus) Catches in the East (Japan) Sea

  • Lee, Chung-Il
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.150-158
    • /
    • 2007
  • Data on squid catches, water temperature, and climatic factors collected for the Northwest and subtropical North Pacific were analyzed to examine the influence of oceanic and climatic conditions in spawning grounds on catches of Japanese common squid, Todarodes pacificus, in the East (Japan) Sea. The main spawning ground was divided into four sub-areas: the South Sea of Korea (R1), the southern waters off Jeju, Korea (R2), the southwestern part of Kyushu, Japan (R3), and the northern part of Okinawa, Japan (R4). Interannual and decadal fluctuations in water temperatures correlated well with squid catches in the East/Japan Sea. In particular, water temperatures at a depth of 50 to 100 m in sub-areas R3 and R4 showed higher correlation coefficients (0.54 to 0.59, p<0.01) in relation to squid catches in the East/Japan Sea than for R1 and R2, which had correlation coefficients of 0.40 or less (p>0.05). Air temperature and wind velocity fluctuations in each sub-area are correlated with water temperature fluctuations and were closely connected with variations in the surface mixed layers. Water, air temperatures and wind velocities at the main spawning grounds are linked to the Southern Oscillation Index (SOI) with higher signals in the ca. 2-4-year band. Strong changes in a specific band and phase occurred around 1976/77 and 1986/87, coincident with changes in squid catches.

Dynamic PIV analysis of High-Speed Flow Ejected from the Inflator Housing of a Curtain-type Airbag (Dynamic PIV를 이용한 커튼형 에어백 부품림 장치의 유동해석)

  • Jang, Young-Gil;Kim, Seok;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.407-408
    • /
    • 2006
  • Passenger safety is one of the most important considerations in the purchase of an automobile. A curtain-type air bag is increasingly adapted in deluxe cars for protecting passengers from the danger of side clash. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to pump up the air bag-curtain. Although the inflator housing is fundamental in designing a curtain-type air bag system, flow information on the inflator housing is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the airbag inflator housing in the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing was found to have large velocity fluctuations and the maximum velocity was about 700m/s. The velocity of high-speed flow was decreased rapidly and the duration of high-speed flow over 400m/s was maintained only to 30ms. After 100ms, there was no perceptible flow.

  • PDF

Discrete Vortex Simulation of Turbulent Separated and Reattaching Flow With Local Perturbation (국소교란이 있는 난류박리 재부착유동의 이산와류 수치해석)

  • 정용만;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.479-491
    • /
    • 1994
  • Discrete vortex method was applied for simulating an active control of turbulent leading- edge separation bubble. The leading-edge separation zone was perturbed by a time-dependent sinusoidal perturbation of different frequencies and levels. In order to describe the local sinusoidal perturbation at the separation point, a source pulsation vortex technique was proposed. The present two-dimensional vortex simulations were qualitatively compared with the experimental results for a blunt circular cylinder, where perturbation was introduced along the square-cut leading edge of the cylinder $(Kiya et al.^{(6,7)}).$ It was found that the reattachment length attained a minimum point at low levels of perturbation and two minima at a moderate higher perturbation frequency. The effects of local perturbation on the evolution of leading-edge separation bubble were scrutinized by comparing the perturbed flow with the natural flow. These comparisons were made for the distributions of mean velocity and its velocity fluctuations, intermittency and wall velocity. The motions of instantaneous reattachment in the space-time domain were demonstrated, which were also compared with the experimental findings. In order to investigate the reduction mehanism of reattachment length in the separation bubble, various cross-correlations for velocity and pressure and the relevant convection velocities were evaluated. It was observed that the convection velocity was closely associated with its corresponding pulsationg frequency.

Ultrasonic Velocity and Absorption Measurements for Polyacrylamide and Water Solutions

  • Bae, Jong-Rim;Kim, Jeong-Koo;Yi, Meyung-Ha
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.155-160
    • /
    • 2003
  • Both ultrasonic velocity at 3 MHz and absorption coefficient for the frequency range of 0.2-2 MHz were measured in an aqueous solution of polyacrylamide for the concentration range of 0.5% to 2.5% by weight. Pulse echo overlap method was taken for measuring the ultrasonic velocity over the temperature range of 10-90℃ and the high-Q ultrasonic resonator method was used for the absorption coefficient at 30℃. The velocity exhibited a maximum value at approximately 70℃, 71℃, 72℃, 73℃ and 74℃ in 2.5%, 2.0%, 1.5%, 1.0%, and 0.5% solutions, respectively. The velocity increased with the concentration at a given temperature. The ultrasonic absorption (a/f²) at a given temperature increased linearly with the concentration for the concentration below 1.5%, but suddenly increased for the concentration above 1.5% concentration. The value of a/f² at 1MHz was entirely due to the classical Stoke's viscous effect. The ultrasonic relaxation in polyacrylamide aqueous solutions, which may be the result of structural fluctuations of polymer molecules such as the segmental motion of the polymer chains, was observed, and at 2.5%, the value of a/f² was found to suddenly increase as frequency decreased.

Unsteady Turbulent Flow with Sudden Pressure Gradient Change

  • Chung Yongmann M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.46-47
    • /
    • 2003
  • Direct numerical simulations are performed for a turbulent flow subjected to a sudden change in pressure gradient. The calculations are started from a fully-developed turbulent channel flow at $Re_{\tau}=180$. The pressure gradient of the channel flow is then changed abruptly. The responses of the turbulence quantities (e.g., turbulence intensities, Reynolds shear stress, and vorticity fluctuations) and the near-wall turbulence structure to the pressure gradient change are investigated. It is found that there are two different relaxations: a fast relaxation at the early stage and a slow one at the later stage. The early response of the velocity fluctuations shows an anisotropic response of the near-wall turbulence.

  • PDF

Direct Numerical Simulation of Mass Transfer in Turbulent Flow Around a Rotating Circular Cylinder (II) - Effect of Schmidt Number - (회전하는 원형단면 실린더 주위의 난류유동 물질전달에 대한)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.846-853
    • /
    • 2005
  • In this paper, mass transfer in turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation for Schmidt numbers Sc=1 and 1670. Correlation between Sherwood and Reynolds number predicted agrees well with other experimental results over both Sc. Reynolds analogy identified at Sc=1 definitely causes a strong correlation between concentration fluctuation and streamwise velocity. For Sc=1670, it is found that positive small values of concentration fluctuations are observed more frequently than the case of Sc=1 particularly out of the range of Nernst diffusion layer in the viscous sub-layer. This fact is fully confirmed by detailed statistical study using a probability density function of concentration fluctuations.

INFLUENCE OF CONVECTION ON LINE ASYMMETRIES

  • Park, Yong-Sun;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.19 no.1
    • /
    • pp.15-31
    • /
    • 1986
  • We have analyzed Gray's observed mean line bisectors of FS, G0, G2, and G5 normal dwarf stars and interpreted them by computing theoretical line bisectors based on a two stream model. A set of perturbed models has been derived, and their detailed structures on temperature fluctuations and velocity fields are presented as a function of depth, which account for the observed bisectors. From the present study, it is found that the degree of stellar convective overshootings and temperature fluctuations in the upper atmospheres increases towards earlier spectral types. The convection cell size inferred from these models is found to increase also with the advancing earlier type. We demonstrated the usefulness of line bisector analysis as a diagnostic probe for stellar convection.

  • PDF

Numerical modeling of seawater flow through the flooding system of dry ocks

  • Najafi-Jilani, A.;Naghavi, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.57-63
    • /
    • 2009
  • Numerical simulations have been carried out on the flooding system of a dry located at the south coasts of Iran. The main goals of seawater flow haracteristics in the intake channels conditions of the flooding system are imposed in the modeling. The upstream boundary condition is the tidal fluctuations of sea water level. At the downstream, the gradually rising water surface elevation in the dry described in a transient boundary condition. The numerical results are compared with available laboratory a good agreement is obtained. The seawater discharge through the flooding system and the required time to filling up the dry dock is determined at the worst case. The water current velocity and pressure on the rigid boundaries are discussed.