• Title/Summary/Keyword: Velocity fluctuations

Search Result 236, Processing Time 0.027 seconds

Correlation of the Wall Skin-Friction and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer(II) (난류경계층에서 벽마찰력과 유동방향 속도성분과의 상관관계(II))

  • Yang, Jun-Mo;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.427-435
    • /
    • 1997
  • Conditional sampling techniques are utilized to investigate the relation between the wall skin-friction and stream wise velocity fluctuations in a turbulent boundary layer. Conditionally averaged results using a peak detection and the VITA (variable-interval time-averaging) technique show that a high skin friction is associated with high frequency components of the wall skin-friction fluctuations. The conditionally averaged wall skin-friction fluctuations obtained by using the VITA technique have a positively-skewed characteristics compared with the conditionally averaged stream wise velocity fluctuations. It is confirmed that there exists a phase shift between the wall skin-friction and stream wise velocity fluctuations, which was also found from the long-time averaged space-time correlations. The amount of phase shift between the wall skin-friction and stream wise velocity fluctuations is the same as that from the long-time averaged space-time correlations and does not change despite the variation of the detection threshold.

Correlation of Wall Vorticity and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer (난류경계층에서 벽와도와 유동방향 속도섭동과의 상관관계)

  • Ryu, Sang-Jin;Kim, Seong-Uk;Yu, Jeong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.523-532
    • /
    • 2001
  • A simultaneous measurement of wall vorticity and near-wall streamwise velocity fluctuations has been performed using a V-type wall vorticity probe and an I-type velocity probe to investigate the relation between them. Long-time averaged space-time correlations show that the wall vorticity is highly correlated with a turbulence structure which is tilted from the wall in the streamwise direction and that there is a streamwise vortex pair near the wall. It is shown that a structure correlated with the streamwise wall vorticity is smaller than and prior to a structure correlated with the spanwise wall vorticity. Tilting angles are obtained from the phase shift between the wall vorticity and streamwise velocity fluctuations. The tilting angle of the structure correlated with the streamwise wall vorticity is larger than that of the structure correlated with the spanwise wall vorticity. The convection velocity of the near-wall streamwise velocity fluctuations obtained from the space-time correlation is in good agreement with previous results.

Correlation of the Wall Skin-Friction and Streamwise Velocity Fluctuations in a Turbulent Boundary Layer(I) -Analysis of Long-Time Averaged Space-Time Correlation- (난류경계층에서 벽마찰력과 유동방향 속도성분과의 상관관계(I)-시간 평균된 공간-시간 상관관계의 분석-)

  • Yang, Jun-Mo;Yu, Jeong-Yeol;Choe, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.140-152
    • /
    • 1997
  • A simultaneous measurement of the wall skin friction and near-wall streamwise velocity fluctuations is performed using hot film and hot wire anemometers to investigate the relation between them. Near-wall turbulence statistics measured with a hot-wire probe are in good agreement with previous results. Turbulence properties of the wall skin friction fluctuations measured with a hot film also show fairly good agreements with those measured by others except that rms level is lower in the present study. Long-time averaged space- time correlations show that the wall skin friction is highly correlated with a turbulence structure which is tilted from the wall in the streamwise direction. Tilting angles are obtained from the phase shifts between the wall skin-friction and streamwise velocity fluctuations. The convection velocity of the near-wall streamwise velocity obtained from the space-time correlation is in good agreement with that from the direct numerical simulation database.

The Transient Response Characteristics of Compliant Coating to Pressure Fluctuations

  • Lee In-Won;Chun Ho-Hwan;Kim Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.533-544
    • /
    • 2006
  • The amplitude and phase lag of surface deformation were determined for a compliant coating under the action of turbulent pressure fluctuations. For this purpose, pressure fluctuations were measured experimentally. The amplitude and duration of coherent wave train of pressure fluctuations were investigated using digital filtration. The transient response was calculated for stabilization of forced oscillations of the coating in approximation of local deformation. The response of coating was analyzed with considerations of its inertial properties and limited duration of coherent harmonics action of pressure fluctuations. It is shown that a compliant coating interacts not with the whole spectrum of pressure fluctuations, but only with a frequency range near the first resonance. According to the analysis, with increasing elasticity modulus of the coating material E, deformation amplitude decreases as 1/E, and dimensionless velocity of the coating surface decreases as $1/\sqrt{E}$. For sufficiently hard coatings, deformation amplitude becomes smaller than the thickness of viscous sublayer, while surface velocity remains comparable to vertical velocity fluctuations of the flow.

Low-Frequency Pressure Fluctuations in an External-Loop Airlift Reactor (외부순환 공기부양반응기에서 낮은 주파수의 압력 변동)

  • Choi, Keun Ho
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.665-674
    • /
    • 2020
  • Low-frequency pressure fluctuations in an external-loop airlift reactor were investigated. Low-frequency pressure fluctuations could be measured by shooting videos about liquid levels in the four piezometric tubes which were installed at the lower and upper parts of the riser and downcomer using a cellular phone. The periodic characteristics of pressure fluctuations were proved by the calculation of their auto-correlation function and cross-correlation function. Even if the riser superficial gas velocity was constant, the riser and downcomer gas holdups as well as wall pressures were periodically changed due to the inertia of circulating liquid. In general, the intensity of pressure fluctuations increased with an increase in the gas velocity. When the unaerated liquid height was 0.04 m, the maximum period of pressure fluctuations was found at the specific gas velocity (0.14 ms-1). It was because the maximum inertia of circulating liquid resulted from a reduction in the increasing rate of the liquid circulation velocity and a decrease in the volume of the effectively circulating liquid with an increase in the gas velocity.

Enhanced spontaneous emissions from suprathermal populations in Kappa distributed plasmas

  • Kim, Sunjung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.56.3-56.3
    • /
    • 2018
  • The present study formulates the theory of spontaneously emitted electromagnetic fluctuations in magnetized plasmas containing particles with an anisotropic suparthermal (bi-Kappa) velocity distribution function. The formalism is general applying for an arbitrary wave vector orientation and wave polarization, and for any wave-frequency range. As specific applications, the high-frequency electromagnetic fluctuations emitted in the upper-hybrid and multiple harmonic electron cyclotron frequency range are evaluated. The fluctuations for low-frequency are also applied, which include the kinetic $Alfv\acute{e}n$, fast magnetosonic/whistler, kinetic slow mode, ion Bernstein cyclotron modes, and higher-order modes. The model predictions are confirmed by a comparison with particle-in-cell simulations. The study describes how energetic particles described by kappa velocity distribution functions influence the spectrum of high and low frequency fluctuations in magnetized plasmas. The new formalism provides quantitative analysis of naturally occurring electromagnetic fluctuations, and contribute to an understanding of the electromagnetic fluctuations observed in space plasmas, where kappa-distributed particles are ubiquitous.

  • PDF

The minimum fluidized velocity in fluidizing combustion bed of uniform particle size distribution system. (균일입자계 유동층연소로의 최소유동화 속도에 관한 연구)

  • 조병렬;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 1996
  • The pressure fluctuations in a gas-solid fluidized bed has been analysed using s statistical method interpreting fluidized 냥d behavior. The performing statistical a analysis of the pressure fluctuations in a fluidized bed of 6.7cm-ID. using uniform p particle size of 115 to $1015{\mu}m$ in diameter. The fluidized gas used air(velocity 0.1~1.2m/sec) at settled bed height to diameter ratios which is LlD=l.O. Then, the pressure fluctuations measured by DPT(differantial pressure transducer). The measuring characteristic values of pressure fluctuation were the mean value and standard value, and also, it has been found that the standard deviation of the pressure fluctuations can be effectively used to predict minimum fluidizing velocity and to explain the fluidized phenomena.

  • PDF

Characteristics of Minimum Fluidization Velocity and Pressure Fluctuations in Annular Fluidized Beds (Annular 유동층 반응기에서 최소유동화 속도 및 압력요동 특성)

  • Son, Sung-Mo;Kim, Uk-Yeong;Shin, Ik-Sang;Kang, Yong;Choi, Myung-Jae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.707-713
    • /
    • 2008
  • Characteristics of minimum fluidization velocity and pressure fluctuations were investigated in an annular fluidized bed whose diameter was 0.102 m and 2.0 m in height. Effects of gas velocity, particle size and bed temperature on the minimum fluidization velocity and pressure fluctuations were examined. The values of minimum fluidization velocity obtained by means of three different methods were very similar each other. The correlation dimension could be a quantitative parameter for expression the resultant complex behavior of gas and solid mixture in the annular fluidized bed. The value of correlation dimension increased with increasing gas velocity, fluidized particle size and temperature in the bed. The minimum fluidization velocity could be determined by means of correlation dimension of pressure fluctuations as well as pressure drop in the bed and standard deviation of pressure fluctuations. The minimum fluidization velocity increased with increasing particle size but decreased with increasing bed temperature in annular fluidized beds. The minimum fluidization velocity was well correlated in therms of correlation dimension as well as operating variables within experimented conditions of this study.

A Study on High Cycle Temperature Fluctuation Caused by Thermal Striping in a Mixing Tee Pipe (혼합배관 내의 열 경계층 이동으로 인한 고주기 온도요동에 관한 연구)

  • Kim, Seoug-B.;Park, Jong-H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.9-19
    • /
    • 2007
  • Fluid temperature fluctuations in a mixing tee pipe were numerically analyzed by LES model in order to clarify internal turbulent flows and to develope an evaluation method for high-cycle thermal fatigue. Hot and cold water with an temperature difference $40^{\circ}C$ were supplied to the mixing tee. Fluid temperature fluctuations in a mixing tee pipe is analysed by using the computational fluid dynamics code, FLUENT, Temperature fluctuations of the fluid and pipe wall measured as the velocity ratio of the flow in the branch pipe to that in the main pipe was varied from 0.05 to 5.0. The power spectrum method was used to evaluate the heat transfer coefficient. The fluid temperature characteristics were dependent on the velocity ratio, rather than the absolute value of the flow velocity. Large fluid temperature fluctuations were occurred near the mixing tee, and the fluctuation temperature frequency was random. The ratios of the measured heat transfer coefficient to that evaluated by Dittus-Boelter's empirical equation were independent of the velocity ratio, The multiplier ratios were about from 4 to 6.

Characteristics of Synchronous and Asynchronous modes of fluctuations in Francis turbine draft tube during load variation

  • Goyal, Rahul;Cervantes, Michel J.;Gandhi, Bhupendra K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.164-175
    • /
    • 2017
  • Francis turbines are often operated over a wide load range due to high flexibility in electricity demand and penetration of other renewable energies. This has raised significant concerns about the existing designing criteria. Hydraulic turbines are not designed to withstand large dynamic pressure loadings on the stationary and rotating parts during such conditions. Previous investigations on transient operating conditions of turbine were mainly focused on the pressure fluctuations due to the rotor-stator interaction. This study characterizes the synchronous and asynchronous pressure and velocity fluctuations due to rotor-stator interaction and rotating vortex rope during load variation, i.e. best efficiency point to part load and vice versa. The measurements were performed on the Francis-99 test case. The repeatability of the measurements was estimated by providing similar movement to guide vanes twenty times for both load rejection and load acceptance operations. Synchronized two dimensional particle image velocimetry and pressure measurements were performed to investigate the dominant frequencies of fluctuations, vortex rope formation, and modes (rotating and plunging) of the rotating vortex rope. The time of appearance and disappearance of rotating and plunging modes of vortex rope was investigated simultaneously in the pressure and velocity data. The asynchronous mode was observed to dominate over the synchronous mode in both velocity and pressure measurements.