• Title/Summary/Keyword: Velocity feedback Control

Search Result 313, Processing Time 0.032 seconds

Robust Linear Tracking Controller Design for Manipulators Using Only Position Measurements (각도 측정치만을 이용한 로봇을 위한 강인한 제어기 설계)

  • Choi, Han-Ho;Yi, Hyung-Kyi;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.347-350
    • /
    • 1992
  • In this note, we propose a method for designing a robot controller which can suppress the effects of both the model uncertainty and noisy velocity measurements. The controller is an output feedback compensator of which the constant gains are given in terms of a Riccati equation and a Lyapunov equation. The controller guarantees not only uniform boundedness but uniform ultimate boundedness. The stability result is local but the region can be arbitrarily enlarged at the expense of large control gain. The control law needs neither the exact knowledge of the physical robot parameters nor clean velocity measurements.

  • PDF

A Continuous Scanning Laser Doppler Vibrometer for Mode Shape Analysis (모드형상분석을 위한 연속 스캐닝 레이저 도플러 진동측정기)

  • 라종필;최지은;박기환;경용수;왕세명;김경석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.274-280
    • /
    • 2002
  • This paper addresses the vibration mode shape measurement technique utilizing a Continuous Scanning Laser Doppler Vibrometer (CSLDV). The continuous scanning capability is added to the conventional discrete Laser Doppler Vibrometer by reflecting the laser beams on the surface of the object using two oscillating mirrors. The bow scanning resulted from the proposed scanning method is eliminated by feedback control. The velocity output signal from the CSLDV is modulated to give the spatial velocity distribution in terms of coefficients which are obtained from the Fast Fourier Transformation of the time dependent velocity signal. Using the Chebyshev series form, the analysis of the vibration mode shape techniques for straight Bine scanning and 2 dimensional scanning are presented and discussed. The performance of the proposed SLDV is presented using the experimental results of the vibration mode shape of a plate

  • PDF

Boundary Control of Container Crane;Two-Stage Control of a Container Crane as Nonflexible and Flexible Cable

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.153-158
    • /
    • 2004
  • In this paper, we proposed a two-stage control of the container crane. The first stage control is time-optimal control for the purpose of fast trolley traveling. With suitable trolley velocity patterns, the sway which is generated during trolley moving is minimized. At the second stage control feedback control law is investigated for the quick suppression of residual vibration after the trolley motion. For more practical system, the container crane system is modeled as a partial differential equation (PDE) system with flexible cable. The dynamics of the cable is derived as a moving system with tension caused by payload using Hamilton's principle for the systems. A control law based upon the Lyapunov's method is derived. It is revealed that a time-varying control force and a suitable passive damping at the actuator can successfully suppress the transverse vibrations.

  • PDF

Sliding Mode Control with RLSN Predictor-Based Perturbation Estimation (RLSN 예측기 기반 섭동 추정기를 갖는 슬라이딩 모드 제어)

  • Nam Yun-Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.880-888
    • /
    • 2006
  • This paper presents the sliding mode control with the perturbation estimator for a nonlinear control system in the presence of perturbations including external disturbances, unpredictable parameter variations, ana unstructured dynamics. The proposed perturbation estimator is based on the Recursive Linear Smoothed Newton predictive algorithm so that it is effective to attenuate an undesired noise in high frequency band and to predict the present perturbation signal from the previous ones. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE) introduced by Elmali and Olgac, the control algorithm proposed in this study can offer better tracking control performances and more feasible estimation characteristics. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a simple two-link robot manipulator subject to velocity feedback signals including white noises.

Optimal Vibration Control Experiments of Composite Plates Using Piezoelectric Sensor/Actuator (압전 감지기/작동기를 이용한 복합재 평판의 최적 진동제어 실험)

  • Rew, Keun-Ho;Han, Jae-Hung;Lee, In
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.161-168
    • /
    • 1997
  • The present paper describes the vibration control experiment of composite plates with bonded piezoelectric sensor and actuator. The system is modeled as two degree-of-freedom system using modal coordinates and the system parameters are obtained from vibration tests. Kalman filter is adopted for extracting modal coordinates from sensor signal, and control algorithms applied to the system are Linear Quadratic Gaussian(LQG) control, Bang-Bang Control (BBC), Negative Velocity Feedback(NVF), Proportional Derivative Control(PDC). From observation of the spillover and control perfomance, it is concluded that a higher order control algorithm such as LQG rather than BBG, NVF, PDC is suitable for efficient simultaneous control of both bending and twisting modes of composite plates.

  • PDF

Development of Chip-based Precision Motion Controller

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1022-1027
    • /
    • 2003
  • The Motion controllers provide the sophisticated performance and enhanced capabilities we can see in the movements of robotic systems. Several types of motion controllers are available, some based on the kind of overall control system in use. PLC (Programmable Logic Controller)-based motion controllers still predominate. The many peoples use MCU (Micro Controller Unit)-based board level motion controllers and will continue to in the near-term future. These motion controllers control a variety motor system like robotic systems. Generally, They consist of large and complex circuits. PLC-based motion controller consists of high performance PLC, development tool, and application specific software. It can be cause to generate several problems that are large size and space, much cabling, and additional high coasts. MCU-based motion controller consists of memories like ROM and RAM, I/O interface ports, and decoder in order to operate MCU. Additionally, it needs DPRAM to communicate with host PC, counter to get position information of motor by using encoder signal, additional circuits to control servo, and application specific software to generate a various velocity profiles. It can be causes to generate several problems that are overall system complexity, large size and space, much cabling, large power consumption and additional high costs. Also, it needs much times to calculate velocity profile because of generating by software method and don't generate various velocity profiles like arbitrary velocity profile. Therefore, It is hard to generate expected various velocity profiles. And further, to embed real-time OS (Operating System) is considered for more reliable motion control. In this paper, the structure of chip-based precision motion controller is proposed to solve above-mentioned problems of control systems. This proposed motion controller is designed with a FPGA (Field Programmable Gate Arrays) by using the VHDL (Very high speed integrated circuit Hardware Description Language) and Handel-C that is program language for deign hardware. This motion controller consists of Velocity Profile Generator (VPG) part to generate expected various velocity profiles, PCI Interface part to communicate with host PC, Feedback Counter part to get position information by using encoder signal, Clock Generator to generate expected various clock signal, Controller part to control position of motor with generated velocity profile and position information, and Data Converter part to convert and transmit compatible data to D/A converter.

  • PDF

Response and control of jacket structure with magneto-rheological damper at multiple locations/combinations

  • Syed, Khaja A.A.;Kumar, Deepak
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.201-221
    • /
    • 2018
  • In this paper a comprehensive study for the structural control of Jacket platform with Magneto-Rheological (MR) damper is presented. The control is implemented as a closed loop feedback of the applied voltage in the MR Damper using fuzzy logic. Nine cases of combinations with MR damper are presented to complete the work. The selection of the MR damper (RD 1005-3) is based on the operating parameters (i.e., the range of frequency and displacement). Bingham model is used to obtain the control forces. The damping co-efficient of the model is obtained using empirical relationship between the voltage in the MR damper and input velocity from the structural members. The force acting on the structure is obtained from Morison equation using P-M spectrum. The results show that the reliable control was obtained when there was a continuous connection of multiple MR dampers with the lower levels of the structure. Independent MR dampers at different levels provided control within a range, while the MR dampers placed at alternate positions gave very high control.

Phase delay control of a cantilever beam using piezoelectric materials (압전체를 사용한 외팔보 진동의 위상지연 제어)

  • Hwang, Jin-Gwon;Choe, Jong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.343-349
    • /
    • 1997
  • In a lightly damped cantilever beam, most of the vibration energy is found around natural frequencies. Based on this, a phase delay control for suppressing vibration of the beam is proposed in this paper. This controller is designed to behave like a velocity feedback controller at the frequencies of modes to be controlled. Also, this controller is designed in consideration with uncontrolled modes for robust stability and improving of the sensitivity function of the control system. This phase delay control is applied to vibration suppression of a cantilever beam with a pair of a piezoelectric actuator and a piezoelectric sensor. Experimental results showed that the phase delay control functions efficiently.

  • PDF

Trajectory Tracking Control of Injection Molding Cylinder Driven by Speed Controlled Hydraulic Pump (속도제어-유압펌프에 의하여 구동되는 사출성형 실린더의 궤적추적제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.2
    • /
    • pp.21-27
    • /
    • 2007
  • This paper deals with the issue of trajectory tracking control of a clamping cylinder for injection moulding machine, which is directly driven by speed controlled hydraulic pump in combination with AC servomotor. As a fundamental step prior to tracking controller design, feedback control system is developed by implementing a position control loop parallel with a system pressure control loop. A sliding mode controller combining velocity feedforward scheme is developed for enhancing the tracking performance. Consequently a significant reduction in tracking error is achieved for both position and pressure control applications.

  • PDF

Intelligent control of pneumatic actuator using On/Off solenoid valves

  • Insung Song;Sungman Pyo;Kyungkwan Ahn;Soonyong Yang;Lee, Byungryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.65.2-65
    • /
    • 2002
  • This paper is concerned with the accurate position control of a rodless pneumatic cylinder using On/Off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem , switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated...on/off solenoid valve, load estimation, MPWM, Artificial neural network.

  • PDF