• Title/Summary/Keyword: Velocity feedback Control

Search Result 313, Processing Time 0.021 seconds

Performance Evaluation and Development of Virtual Reality Bike Simulator (가상현실 바이크 시뮬레이터의 개발과 성능평가)

  • Kim, Jong-Yun;Song, Chul-Gyu;Kim, Nam-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.3
    • /
    • pp.112-121
    • /
    • 2002
  • This paper describes a new bike system for the postural balance rehabilitation training. Virtual environment and three dimensional graphic model is designed with CAD tools such as 3D Studio Max and World Up. For the real time bike simulation, the optimized WorldToolKit graphic library is embedded with the dynamic geometry generation method, multi-thread method, and portal generation method. In this experiment, 20 normal adults were tested to investigate the influencing factors of balancing posture. We evaluated the system by measuring the parameters such as path deviation, driving velocity, COP(center for pressure), and average weight shift. Also, we investigated the usefulness of visual feedback information by weight shift. The results showed that continuous visual feedback by weight shift was more effective than no visual feedback in the postural balance control It is concluded this system might be applied to clinical use as a new postural balance training system.

Walkway system for measuring and training in gait

  • Hirokawa, Sunji;Matsumura, Kouji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.797-800
    • /
    • 1987
  • We developed a biofeedback gait training system; a 12 m measuring walkway with a training walker which moves at prescribed velocity. The walkway measures a.11 temporal and distance factors of gait. This system provides visual feedback for distance factors and auditory one for temporal at the prescribed walking velocity. Experiments were performed on normal and degenerative knee joint subjects, and this system was verified to be very useful.

  • PDF

The velocity control system design of marine diesel engine with mechanical-hydraulic governor using w transformation method (w 변환에 의한 기계-유압식 조속기를 가진 선박용 디젤기관의 속도제어 시스템 설계)

  • Kang, C.N.;Park, J.G.;Chung, J.Y.;Roh, Y.O.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.696-698
    • /
    • 1997
  • The marine diesel engine have been widely applied with a mechanical hydraulic governor to control the ship speed for long time. But it was recently very difficult for the mechanical hydraulic governor to control the speed of engine under the condition of low speed and low load because of jiggling by rough fluctuation of rotating torque and hunting by dead time of diesel engine. In order to analyze the speed control system the transfer function was converted from z to w transformation. The author proposed velocity control system with feedback loop by PID controller in order to stabilize for unstable area. The influence of dead time was discussed by Nichols chart and unit step response curve. It was confirmed through computer simulation that the performance improvement of a mechanical hydraulic governor can be obtained by PID controller.

  • PDF

A Real-time Control of Adaptive Controller via Non-linear Estimated State Feedback for Robot Manipulator using MatrixX and DSP (MatrixX 와 DSP를 이용한 Robot Manipulator용 비선형 관측기의 상태 피드백에 의한 적응제어기의 실시간 제어)

  • Gil, Jin-Soo;Kim, Young-Soo;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.859-862
    • /
    • 1995
  • In this paper, an adaptive nonlinear observer using new Off-line algorithm is proposed to reduce the computing time. The estimated velocity data obtained from the control scheme is more accurate than that by the normal interpolation method when the velocity to be estimated is at the low speed or the fast speed. It is also shown that the adaptive controller based on AC100/C30 is useful for implementing the real-time controller.

  • PDF

A Study on an Integral State Feedback Controller for Way-point Tracking of an AUV (무인잠수정의 적분 상태 궤환 제어기 설계 및 경유점 추적 연구)

  • Bae, Seol B.;Shin, Dong H.;Park, Sang H.;Joo, Moon G.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.661-666
    • /
    • 2013
  • A state feedback controller with integration of output error is proposed for way-point tracking of an AUV (Autonomous Underwater Vehicle). For the steering control on the XY plane, the proposed controller uses three state variables (sway velocity, yaw rate, heading angle) and the integral of the steering error, and for the depth control on the XZ plane, it uses four state variables (pitch rate, depth, pitch angle) and the integral of the depth error. From the simulation using Matlab/Simulink, we verify that the performance of the proposed controller is satisfactory within an error range of 1m from the target way-point for arbitrarily chosen sets of consecutive way-points.

Robust Disturbance Suppression Control for AC Servo Motors (AC 서보모터에 대한 견실한 외란억제 제어)

  • Kim, Chang-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.839-848
    • /
    • 2012
  • In this paper, we propose a robust control scheme of AC servo motors to suppress disturbance torques effectively. The proposed controller consists of both a model based feed-forward controller and a stabilizing feedback controller. The feed-forward controller is designed such that the output of the nominal plant tracks perfectly the reference velocity command with desired dynamic characteristics. The feedback controller stabilizes the overall closed loop system. Furthermore, the feedback controller contains a free function that can be chosen arbitrarily. The free function can be designed so as to achieve both suppression of disturbances and robustness to model uncertainties. In order to illuminate the superior performance of the proposed control scheme to the conventional ones, we present some simulation results.

Comparative Evaluation of Sky-Hook Controllers for a Full Car Model with Active or Semi-Active Suspension Systems (능동과 반능동 현가장치로 된 전차량 모델에 대한 스카이훅 제어기의 비교 평가)

  • Yun, Il-Jung;Im, Jae-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.614-621
    • /
    • 2001
  • The controllers for a full car 7-DOF model with 4 active or semi-active suspension units are designed and evaluated in this research. The control algorithms for suspension systems, such as full state feedback active, full state feedback semi-active, sky-hook active, sky-hook semi-actvie, and on-off suspension systems, are analyzed and evaluated with respect to ride comfort. The vehicle dynamic performances are expressed by response curves to a bump input, performance indices for asphalt road input, and frequency characteristic curves. Heaving, rolling, and pitching inputs are applied to the vehicle dynamic system to evaluate frequency characteristics. The simulation results show that the ride quality of the sky-hook controller approaches that the full state feedback controller more closely in semi-active suspension system than in active suspension system. For the implementation of a vehicle with sky-hook suspension control systems in this paper, 7 velocity sensors are required to measure the states.

  • PDF

Functional Assessment of Vestibular System and Dizziness Diagnosis (전정기능 평가 및 질병 진단을 위한 정현파 회전자극기 개발)

  • Jeong, Ho-Chun;Lim, Seung-Kwan;Kim, Kuy-Kem;Chin, Dal-Bok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1027-1030
    • /
    • 1996
  • The purpose of this study was to develop systematic diagnostic system testing easily, rapidly vestibular function of patients suffered from vestibular syndrome such as nausea vomiting, dizzness, ataxia. Diagnostic system composed of rotatory chair system which rotated sinusoidally patients against their vertical axis for purpose of invoking eye movement by vestibulo-ocular reflex and the softwares which storaged eye movement into computer and analyzed eye movement. Rotatory chair system consisted of comfortable chair and DC servomotor with reducer(1:80) by controlled servo in field of nonlinear motor control, double feedback loops system containing velocity feedback loop and position feedback loop was applied to this sever controlled rotatory chair system. Maximum rotatory velocity of rotatory chair was upto 60 degree per second and frequency range was 0.01 to 0.64 Hz. These above results suggest that clinical rotatory chair system may test easily, rapidly vestibular function and diagnose etiology of dizziness, thus giving effective assistance on the treatment of dizziness patients.

  • PDF

Active Vibration Control of a Planar Parallel Manipulator using Piezoelectric Materials (압전소자를 이용한 수평 병렬형 머니풀레이터의 능동 진동 제어)

  • 강봉수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2003
  • This paper presents a new approach for the use of smart materials, piezoelectric materials of PVDF and PZT, for vibration attenuation of a planar parallel manipulator. Since lightweight linkages of parallel manipulators deform under high acceleration/deceleration, an active damper is needed to attenuate vibration due to structural flexibility of linkages. Based on the dynamic model of a planar parallel manipulator, an active damping controller is developed, which consists of a PD feedback control scheme, applied to linear electrical motors, and a linear velocity feedback (L-type) scheme applied to either PVDF layer or PZT actuator(5). Simulation results show that piezoelectric materials yield good damping performance, resulting in precise manipulations of a planar parallel manipulator.

A Study on an Input-Output Controller Based on the Time-Scale Properties of an Underwater Vehicle Dynamics (수중 운동체의 운동 특성을 고려한 입/출력 제어기 구성에 관한 고찰)

  • Jo, Gyung-Nam;Seo, Dong-C.;Choi, Hang-S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper, it is shown that an input-output (I/O) feedback linearized controller can be designed rationally by utilizing the time-scale properties of heave and pitch for an underwater vehicle. It is assumed that the dynamics of the vehicle is restricted to the vertical plane. An output-feedback control is designed, which stabilizes steady cruising paths. It is shown that the vehicle dynamics with acceleration as output becomes minimum phase. The dynamics can be transformed into a reduced system through a kind of partial linearization and singular perturbation technique. The reduced system is not only minimum phase but also exactly I/O linearizable via feedback. The I/O dynamic characteristics of the heave and pitch modes can be made linear and decoupled. Furthermore it becomes independent of cruising condition such as vehicle velocity. This study may help for designing autopilot systems for underwater vehicles.