• Title/Summary/Keyword: Velocity feedback

Search Result 387, Processing Time 0.023 seconds

Effect of Guideway Characteristics on Runnability of Actively Controlled Maglev Vehicle (선로특성이 능동제어 자기부상열차의 주행성에 미치는 영향)

  • Lee, Jun-Seok;Kim, Moon-Young;Kwon, Soon-Duck;Yeo, In-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2D
    • /
    • pp.295-303
    • /
    • 2009
  • The purpose of present study is to examine the effect of guideway characteristics on runnability of low and medium speed maglev vehicle. Dynamic governing equation for 2-dof vehicle and optimal feedback control scheme are developed. And then the effect of vehicle speed, rail roughness, guideway deflection, continuity of spans, each span length on dynamic response of the UTM-01 maglev vehicle are investigated. From the numerical simulation, it is found that the gap between bogie and guideway does not increase greatly within design velocity of the vehicle. The response of vehicle are mostly affected by the guideway deflection rather than rail roughness. As a result of the present study, the runnability of maglev vehicle can be improved by reducing the maximum deflection of guideway and adopting the continuous girder systems.

Motor Control IP Design and Quality Evaluation from the Viewpoint of Reuse (ICCAS 2004)

  • Lee, Sang-Deok;Han, Sung-Ho;Kim, Min-Soo;Park, Young-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.981-985
    • /
    • 2004
  • In this paper we designed the motor control IP Core and evaluate its quality from the viewpoint of IP reuse. The most attractive merit of this methodology, so called IP-based hardware design, is hardware reuse. Although various vendors designed hardware with the same specification and got the same functional results, all that IPs is not the same quality in the reuse aspect. As tremendous calls for SoC have been increased, associated research about IP quality standard, VSIA(Virtual Socket Interface Alliance) and STARC(Semiconductor Technology Academic Research Center), has been doing best to make the IP quality evaluation system. And they made what conforms to objective IP design standard. We suggest the methodology to evaluate our own designed motor control IP quality with this standard. To attain our goal, we designed motor control IP that could control the motor velocity and position with feedback compensation algorithm. This controller has some IP blocks : digital filter, quadrature decoder, position counter, motion compensator, and PWM generator. Each block's functionality was verified by simulator ModelSim and then its quality was evaluated. To evaluate the core, We use Vnavigator for lint test and ModelSim for coverage check. During lint process, We adapted the OpenMORE's rule based on RMM (Reuse Methodology Manual) and it could tell us our IP's quality in a manner of the scored value form. If it is high, its quality is also high, and vice versa. During coverage check ModelSim-SE is used for verifying how our test circuits cover designs. This objective methods using well-defined commercial coverage metrics could perform a quantitative analysis of simulation completeness. In this manner, We evaluated the designed motor control IP's quality from the viewpoint of reuse. This methodology will save the time and cost in designing SoC that should integrate various IPs. In addition to this, It can be the guide for comparing the equally specified IP's quality. After all, we are continuously looking forward to enhancing our motor control IP in the aspect of not only functional perfection but also IP reuse to prepare for the SoC-Compliant motor control IP design.

  • PDF

Development of Control Algorithm for Ship Berthing and Unberthing Systems Using a Joystick (조이스틱을 이용한 선박의 입출항 및 접이안 시스템의 제어 알고리즘 개발)

  • Hong, Seong-Kuk;Jung, Yun-Ha;Kim, Sun-Young;Won, Moon-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.325-332
    • /
    • 2007
  • This study develops a control algorithm on berthing/unberthing system using a joystick for ships with thrusters and a rudder. A nonlinear mathematical model for low speed maneuvering of typical container ships is used to develop a MIMO(multi-input multi-output) nonlinear control algorithm for velocity feedback joystick control. Also a virtual HILS(hardware in the loop simulation) software program for berthing/unberthing is developed to test the performance of the nonlinear and a PID control algorithm. The program is developed using LabWindow/CVI, and a user can see current position and desired trajectory of ship in a monitor, then he can control forward and yaw velocities of a ship using a joystick. The simulation results show that the nonlinear mfd the PID controller have superior performance over a simple open loop joystick control algorithm.

Study on the Improvement of Equilibrium Sense of the Elderly Using Virtual Bicycle System (가상 자전거 시스템을 이용한 고령자의 평형감각 증진에 관한 연구)

  • Jeong Sung-Hwan;Piao Yong-Jun;Chong Woo-Suk;Kwon Tae-Kyu;Hong Chul-Un;Kim Nam-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.57-66
    • /
    • 2005
  • In this paper, a new rehabilitation training system was developed to improve equilibrium sense by combining virtual reality technology with a fixed exercise bicycle. The subjects consisted of two groups. A group of young people, was compared against a group of elderly. We measured three different running modes of virtual bicycle system with two successive sets. The parameters measured were running time, velocity, the weight movement, the degree of the deviation from the road, and the variables about the center of pressure. The repeated training, our results showed that the running capability of the elderly improve compared. In addition, it was found out that the ability of postural control and the equilibrium sense was improved with the presentation of the visual feedback information of the distribution of weight. From the results of this experiment, we showed that our newly developed system might be useful in the diagnosis of equilibrium sense or in the improvement of the sense of sight and, somatic, and vestibular sense of the elderly in the field of rehabilitation training.

Correlation between Head Movement Data and Virtual Reality Content Immersion (헤드 무브먼트 데이터와 가상현실 콘텐츠 몰입도 상관관계)

  • Kim, Jungho;Yoo, Taekyung
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.500-507
    • /
    • 2021
  • The virtual reality industry has an opportunity to take another leap forward with the surge in demand for non-face-to-face content and interest in the metaverse after Covid-19. Therefore, in order to popularize virtual reality content along with this trend, high-quality content production and storytelling research suitable for the characteristics of virtual reality should be continuously conducted. In order for content to which virtual reality characteristics are applied to be effectively produced through user feedback, a quantitative index that can evaluate the content is needed. In this study, the process of viewing virtual reality contents was analyzed and head movement was set as a quantitative indicator. Afterwards, the experimenter watched five animations and analyzed the correlation between recorded head movement information and immersion. As a result of the analysis, high immersion was shown when the head movement speed was relatively slow, and it was found that the head movement speed can be used significantly as an index indicating the degree of content immersion. The result derived in this way can be used as a quantitative indicator that can verify the validity of the storytelling method applied after the prototype is produced when the creator creates virtual reality content. This method can improve the quality of content by quickly identifying the problems of the proposed storytelling method and suggesting a better method. This study aims to contribute to the production of high-quality virtual reality content and the popularization of virtual reality content as a basic research to analyze immersion based on the quantitative indicator of head movement speed.

A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System (NCW 환경에서 C4I 체계 전투력 상승효과 평가 알고리즘 : 기술 및 인적 요소 고려)

  • Jung, Whan-Sik;Park, Gun-Woo;Lee, Jae-Yeong;Lee, Sang-Hoon
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.55-72
    • /
    • 2010
  • Recently, the battlefield environment has changed from platform-centric warfare(PCW) which focuses on maneuvering forces into network-centric warfare(NCW) which is based on the connectivity of each asset through the warfare information system as information technology increases. In particular, C4I(Command, Control, Communication, Computer and Intelligence) system can be an important factor in achieving NCW. It is generally used to provide direction across distributed forces and status feedback from thoseforces. It can provide the important information, more quickly and in the correct format to the friendly units. And it can achieve the information superiority through SA(Situational Awareness). Most of the advanced countries have been developed and already applied these systems in military operations. Therefore, ROK forces also have been developing C4I systems such as KJCCS(Korea Joint Command Control System). And, ours are increasing the budgets in the establishment of warfare information systems. However, it is difficult to evaluate the C4I effectiveness properly by deficiency of methods. We need to develop a new combat effectiveness evaluation method that is suitable for NCW. Existing evaluation methods lay disproportionate emphasis on technical factors with leaving something to be desired in human factors. Therefore, it is necessary to consider technical and human factors to evaluate combat effectiveness. In this study, we proposed a new Combat Effectiveness evaluation algorithm called E-TechMan(A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System). This algorithm uses the rule of Newton's second law($F=(m{\Delta}{\upsilon})/{\Delta}t{\Rightarrow}\frac{V{\upsilon}I}{T}{\times}C$). Five factors considered in combat effectiveness evaluation are network power(M), movement velocity(v), information accuracy(I), command and control time(T) and collaboration level(C). Previous researches did not consider the value of the node and arc in evaluating the network power after the C4I system has been established. In addition, collaboration level which could be a major factor in combat effectiveness was not considered. E-TechMan algorithm is applied to JFOS-K(Joint Fire Operating System-Korea) system that can connect KJCCS of Korea armed forces with JADOCS(Joint Automated Deep Operations Coordination System) of U.S. armed forces and achieve sensor to shooter system in real time in JCS(Joint Chiefs of Staff) level. We compared the result of evaluation of Combat Effectiveness by E-TechMan with those by other algorithms(e.g., C2 Theory, Newton's second Law). We can evaluate combat effectiveness more effectively and substantially by E-TechMan algorithm. This study is meaningful because we improved the description level of reality in calculation of combat effectiveness in C4I system. Part 2 will describe the changes of war paradigm and the previous combat effectiveness evaluation methods such as C2 theory while Part 3 will explain E-TechMan algorithm specifically. Part 4 will present the application to JFOS-K and analyze the result with other algorithms. Part 5 is the conclusions provided in the final part.

Positron Annihilation Spectroscopy of Active Galactic Nuclei

  • Doikov, Dmytry N.;Yushchenko, Alexander V.;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This paper focuses on the interpretation of radiation fluxes from active galactic nuclei. The advantage of positron annihilation spectroscopy over other methods of spectral diagnostics of active galactic nuclei (therefore AGN) is demonstrated. A relationship between regular and random components in both bolometric and spectral composition of fluxes of quanta and particles generated in AGN is found. We consider their diffuse component separately and also detect radiative feedback after the passage of high-velocity cosmic rays and hard quanta through gas-and-dust aggregates surrounding massive black holes in AGN. The motion of relativistic positrons and electrons in such complex systems produces secondary radiation throughout the whole investigated region of active galactic nuclei in form of cylinder with radius R= 400-1000 pc and height H=200-400 pc, thus causing their visible luminescence across all spectral bands. We obtain radiation and electron energy distribution functions depending on the spatial distribution of the investigated bulk of matter in AGN. Radiation luminescence of the non-central part of AGN is a response to the effects of particles and quanta falling from its center created by atoms, molecules and dust of its diffuse component. The cross-sections for the single-photon annihilation of positrons of different energies with atoms in these active galactic nuclei are determined. For the first time we use the data on the change in chemical composition due to spallation reactions induced by high-energy particles. We establish or define more accurately how the energies of the incident positron, emitted ${\gamma}-quantum$ and recoiling nucleus correlate with the atomic number and weight of the target nucleus. For light elements, we provide detailed tables of all indicated parameters. A new criterion is proposed, based on the use of the ratio of the fluxes of ${\gamma}-quanta$ formed in one- and two-photon annihilation of positrons in a diffuse medium. It is concluded that, as is the case in young supernova remnants, the two-photon annihilation tends to occur in solid-state grains as a result of active loss of kinetic energy of positrons due to ionisation down to thermal energy of free electrons. The single-photon annihilation of positrons manifests itself in the gas component of active galactic nuclei. Such annihilation occurs as interaction between positrons and K-shell electrons; hence, it is suitable for identification of the chemical state of substances comprising the gas component of the investigated media. Specific physical media producing high fluxes of positrons are discussed; it allowed a significant reduction in the number of reaction channels generating positrons. We estimate the brightness distribution in the ${\gamma}-ray$ spectra of the gas-and-dust media through which positron fluxes travel with the energy range similar to that recorded by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) research module. Based on the results of our calculations, we analyse the reasons for such a high power of positrons to penetrate through gas-and-dust aggregates. The energy loss of positrons by ionisation is compared to the production of secondary positrons by high-energy cosmic rays in order to determine the depth of their penetration into gas-and-dust aggregations clustered in active galactic nuclei. The relationship between the energy of ${\gamma}-quanta$ emitted upon the single-photon annihilation and the energy of incident electrons is established. The obtained cross sections for positron interactions with bound electrons of the diffuse component of the non-central, peripheral AGN regions allowed us to obtain new spectroscopic characteristics of the atoms involved in single-photon annihilation.